

CONCLUSION ON PESTICIDE PEER REVIEW

Conclusion regarding the peer review of the pesticide risk assessment of propaquizafop (an ester variant of quizalofop-P)

Issued on 26 November 2008

SUMMARY

Propaquizafop is one of the 79 substances of the third stage Part A of the review programme covered by Commission Regulation (EC) No 1490/2002.¹ This Regulation requires the European Food Safety Authority (EFSA) to organise upon request of the EU-Commission a peer review of the initial evaluation, i.e. the draft assessment report (DAR), provided by the designated rapporteur Member State and to provide within six months a conclusion on the risk assessment to the EU-Commission.

Italy being the designated rapporteur Member State submitted the DAR on propaquizafop in accordance with the provisions of Article 10(1) of the Regulation (EC) No 1490/2002, which was received by the EFSA on 22 September 2005. The peer review was initiated on 12 May 2006 by dispatching the DAR for consultation of the sole notifier Makhteshim Agan and the Member States. Subsequently, the comments received on the DAR were examined and responded by the rapporteur Member State in the reporting table. This table was evaluated by the EFSA to identify the remaining issues. The identified issues as well as further information made available by the notifier upon request were evaluated in a series of scientific meetings with Member State experts in June – July 2008.

A final discussion of the outcome of the consultation of experts took place during a written procedure with the Member States in October 2008 leading to the conclusions as laid down in this report.

Propaquizatop is an ester variant of the active substance quizalofop- P^2 which is included in the third stage Part B of the review programme. The EFSA wrote a conclusion on quizalofop-P based on the DARs which were submitted on the ester variants quizalofop-P-ethyl³ and quizalofop-P-tefuryl.⁴

This conclusion on propaquizatop was reached on the basis of the evaluation of the representative uses as a herbicide on sugar beet and oilseed rape. Full details of the good agricultural practice (GAP) can be found in the attached list of endpoints.

¹ OJ No L 224, 21.08.2002, p. 25, as amended by Regulation (EC) No 1095/2007 (OJ L 246, 21.9.2007, p. 19)

 $^{^{2}}$ (*R*)-2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy]propionic acid

³ ethyl (2*R*)-2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}propanoate

⁴ (*RS*)-tetrahydrofurfuryl (*R*)-2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy]propionate

The representative formulated product for the evaluation was 'Agil 100 EC', an emulsifiable concentrate (EC).

The meeting of experts was not able to conclude on the acceptability of any of the methods as none of the methods were capable of analysing for the original residue definition proposed in the DAR. As it is not possible to reconsider all the methods at this time no conclusion can be reached. A general data gap for reconsideration of the methods has been identified.

There are insufficient analytical methods as well as methods and data relating to physical, chemical and technical properties to ensure that quality control measurements of the plant protection product are possible. The specification of the technical material has not been accepted. The method of analysis for the formulation is identified as a data gap. The formulation was seen to perform poorly in some of the physical-chemical tests. And there are outstanding issues on possible relevant impurities.

In mammals, propaquizatop shows a low acute toxicity via the oral and dermal routes, as well as via inhalation; it is non-irritating to the skin and eyes. Skin sensitisation tests in guinea pigs gave positive results (R43 "May cause sensitisation by skin contact" was proposed). In repeated dose studies, liver was shown to be the target organ. The short-term toxicity No Observed Adverse Effect Levels (NOAELs) for rats and mice were 6.25 and 10 mg/kg bw/day, respectively, on the basis of liver effects (Lowest Observed Adverse Effect Levels - LOAELs 25 and 30 mg/kg bw/day, respectively); in long-term studies the relevant NOAELs were set at 5 mg/kg bw/day for rats and 1.5 mg/kg bw/day for mice (LOAELs 25 mg/kg bw/day and 7.5 mg/kg bw/day, respectively). Propaguizafop did not show any genotoxic potential. Increased incidences of hepatocellular adenomas and carcinomas were seen in both rats and mice. In one study in rats, an increase in Leydig cell tumours was also noted. Mechanistic studies performed in rats and mice indicate that propaquizafop acts as a peroxisome proliferator. Based on the occurrence of malignant tumours in two species (hepatocellular adenomas and carcinomas in rats and mice) and on an increased incidence of Leydig cell tumours in rats, proposal for classification and labelling of propaguizatop as Carc. Cat. 3 R40 ("Limited evidence of a carcinogenic effect") was considered and proposed during the meeting. In a multigeneration reproductive toxicity study, there were no treatment-related effects on mating performance, fertility index, gestation length or gestation index. The relevant reproductive NOAEL was 15 mg/kg bw/day, whereas the relevant maternal and offspring NOAEL were 3 mg/kg bw/day. In a rat developmental study, numbers of implantations, corpora lutea and viable foetuses were comparable among groups. No treatment-related skeletal malformations were observed in any dose group. The NOAEL for developmental toxicity was 20 mg/kg bw/day based on an increased incidence of dilated renal pelvis up to 50 mg/kg bw/day. The NOAEL for maternal toxicity was 50 mg/kg bw/day due to decreased body weight gain at 125 mg/kg bw/day. In rabbits, there were no treatment related malformations or developmental changes. The relevant maternal and developmental NOAELs were 6 mg/kg bw/day and 18 mg/kg bw/day, respectively. The Acceptable Daily Intake (ADI) of **0.015 mg/kg bw/day** was

based on the NOAEL of 1.5 mg/kg bw/day from the mouse long-term study (Safety Factor (SF): 100); the NOAEL of 6.25 mg/kg bw/day from the rat 90 day study was the basis for the Acceptable Operator Exposure Level (AOEL) of **0.04 mg/kg bw/day**, SF 100 and limited oral absorption (65%). Based on the acute toxicological profile of the propaquization, the Acute Reference Dose (ARfD) was not allocated. The operator, worker and bystander exposure assessment is below the AOEL even without the use of Personal Protective Equipment (PPE).

The metabolism of propaguization has been investigated in cotton, soybean, lettuce and sugar beet using ¹⁴C-propaguizatop labelled on the phenyl and/or the guinoxaline moiety. The metabolism proceeds primarily with the hydrolysis of the ester link to yield guizalofop followed by the loss of the propionyl moiety leading to quizalofop-phenol⁵, these metabolites being also observed as conjugates. Further metabolism occurs by hydroxylation of the quinoxaline moiety giving hydroxy-quizalofop⁶ and hydroxy-quizalofop-phenol⁷. In addition and in a limited extent, the presence of quinoxaline metabolites and phenoxy acid metabolites indicated a cleavage of the oxygen bond of the molecule. In the sugar beet study, the metabolites quizalofop-phenol, hydroxy-quizalofop-phenol, hydroxyquinoxaline⁸ and dihydroxy-quinoxaline⁹ were detected in leaves and roots in similar proportions to propaguizatop and guizalofop. However, taking into account the overall low residue levels expected in leaves and roots at harvest, these metabolites were not included in the plant residue definition. Finally, considering that the radioactivity was not sufficiently characterized in sugar beet and in cotton seeds the notifier was asked to provide clarifications on the uncharacterized radioactivity, otherwise a new metabolism studies on root crop on oilseed crop should be submitted. In conclusion and provisionally the experts proposed the following residue definition for monitoring and risk assessment:

"Sum of propaquizafop and quizalofop, expressed as quizalofop (sum of isomers)".

Considering the metabolism studies performed with the three quizalofop esters, a common residue definition for monitoring and risk assessment was proposed for propaquizafop, quizalofop-P-ethyl and quizalofop-P-tefuryl as:

"Sum of quizalofop-esters, quizalofop and quizalofop conjugates expressed as

quizalofop (sum of isomers)".

These definitions should remain provisional, pending the submission and the evaluation of the requested information on the toxicological relevance of the phenoxy metabolites observed in the quizalofop-P-ethyl studies. After the meeting, the EFSA was however of the opinion that there is no need to include the conjugates in the residue definition for monitoring.

⁵ 2-[4-(6-chloroquinoxalin-2-yloxy)phenol]

⁶ (R)-2-[4-(6-chloro-3-hydroxyquinoxalin-2-yloxy)phenoxy]propionic acid

⁷ 4-(3-hydroxy-6-chloroquinoxalin-2-yloxy)phenol

⁸ 6-chloroquinoxalin-2-ol

⁹ 6-chloroquinoxaline-2,3-diol

Supervised residue trials were submitted to support representative uses on rape seed and sugar beet. Samples were analysed using a method covering propaquizafop, quizalofop and quizalofop-phenol. Although this method was not strictly in line with the residue definition, results were considered as valid since the scope of this method was wider than the proposed residue definitions. The storage stability study showed the residues of propaquizafop, quizalofop and quizalofop-phenol to be stable under deep freeze storage conditions for at least 2 years in soya, rapeseed and tomato matrices. The behaviour of the residues in processing products was not investigated due to the low residue levels detected in the raw agricultural products.

A rotational crop study performed with ¹⁴C-propaquizafop labelled on the quinoxaline moiety was provided. Propaquizafop was not observed in the different rotational plant parts investigated and the detected metabolites (quizalofop, quizalofop-phenol and their hydroxy derivatives) have also been identified in the primary crop studies, suggesting a similar metabolic pathway in both primary and rotational crops. Taking into account the residue levels observed in plants at harvest, it was concluded that no significant residues of propaquizafop or its metabolites are expected in rotational crops.

Metabolism studies in lactating goat and laying hen were provided. However, the meeting of experts concluded that no residue definitions can be established on the basis of these studies since the characterisation of the radioactivity was not sufficiently investigated in some matrices, especially in fat. However, and taking into account the low residues levels observed in rapeseed and sugar beet, the experts agreed that there is no need to set a residue definition in products of animal origin for propaquizafop at the moment. No feeding study was provided, the trigger value of 0.1 mg/kg in diet being not exceeded.

Considering the comparative metabolite distribution in rat and goat for quizalofop-P-ethyl and propaquizafop, the experts discussed whether a supplementary metabolism study on pig should be requested. The metabolism in rats and ruminants was similar qualitatively but differences were observed quantitatively. Higher residues were detected in rat on an equivalent mg/kg bw basis and the notifiers were asked to provide explanations for these quantitative differences. Such request is not relevant for propaquizafop at the moment, but this point would have to be considered if new uses beyond those supported in this review lead to a significant residue intake by animals.

No chronic risk for the consumer resulting from the use of propaquizafop according to the representative uses on sugar beet and oilseed rape is expected since the Theoretical Maximum Daily Intake (TMDI) using various calculation models was at most 21% of the ADI (0.015 mg/kg bw/d) using the UK model. No acute evaluation was performed as no ARfD was set for propaquizafop.

Based on the available supervised residue trials and the proposed residue definition a MRL of 0.05* mg/kg was proposed on sugar beet and rape seed, these MRLs being consistent with the proposals done for quizalofop-P-ethyl and quizalofop-P-tefuryl on these crops.

In the environmental fate and behaviour section, the data sets for the common metabolites quizalofop, hydroxy-quizalofop and dihydroxy-quinoxaline available in the DARs of propaquizafop, quizalofop-P-ethyl and quizalofop-P-tefuryl were combined in order to derive a single set of endpoints (amalgamated list of endpoints) for the fate properties of each metabolite to use in the environmental exposure assessment.

In soil under aerobic conditions propaguizafop exhibits very low persistence forming the major soil metabolite quizalofop (accounting for up to 88% of applied radioactivity (AR)) which exhibits low to high persistence, the metabolite hydroxy-quizalofop accounting for up to 33% AR which exhibits low to medium persistence, and the metabolite dihydroxy-quinoxaline accounting for up to 14% AR which exhibits moderate to high persistence. The metabolite hydroxy-quinoxaline (up to 8.8% AR) was present at levels that trigger a groundwater exposure assessment and exhibits moderate to medium persistence. Another minor non transient metabolite in soil (max. 5.4 - 5.7% AR in three consecutive sampling points) was quizalofop-phenol. Mineralisation of the hydroquinone ring or the quinoxaline group to carbon dioxide ranged from 22.6% AR (after 121 days) to 44.2% AR (after 119 days). The formation of unextractable residues was a significant sink, accounting for 36 - 39 % AR after 120 – 121 days. Due to the rapid degradation of propaquizafop in soil under aerobic conditions, batch equilibrium studies with the parent compound were not performed. An adsorption Koc of 2220 mL/g has been estimated for modelling purposes, based on the *n*-octanol/water partition coefficient Log K_{ow}. Quizalofop and hydroxy-quizalofop exhibit low to high mobility in soil, dihydroxyquinoxaline exhibits low to very high mobility, and hydroxy-quinoxaline exhibits very low mobility in soil. Based on the adsorption properties of the minor non transient metabolite quizalofop-phenol (slight mobility to immobile) a groundwater exposure assessment for this metabolite was considered not necessary. There was no indication in the available data that adsorption of either propaquizafop or its identified soil metabolites was pH dependent.

In dark natural sediment water systems propaquizafop degraded very rapidly to the metabolites quizalofop (max. 90 % AR in water and max. 45% AR in the sediment), dihydroxy-quinoxaline (max. 10% in the sediment) and hydroxy-quizalofop (max. 11.2% AR in the sediment). The estimated rate of degradation in the aquatic system ($DT_{50 \text{ system}}$, $DT_{50 \text{ water}}$, $DT_{50 \text{ sed}}$) for propaquizafop and its metabolites quizalofop, hydroxy-quizalofop, dihydroxy-quinoxaline and hydroxy-quinoxaline are not peer reviewed and were not used in the risk assessment. The necessary surface water and sediment exposure assessments were appropriately carried out using the agreed FOCUS scenarios approach for hydroxy-quizalofop (up to Step 3). The initial predicted environmental concentrations in surface water (PEC_{sw}) and in sediment (PEC_{sed}) were used with the appropriate toxicity endpoints for the calculation of the toxicity exposure ratios (TERs).

The potential for groundwater exposure from the applied for intended uses by propaquizafop and its metabolites quizalofop, hydroxy-quizalofop, dihydroxy-quinoxaline, and hydroxy-quinoxaline above the parametric drinking water limit of 0.1 μ g/L, was concluded to be low in geoclimatic situations that are represented by all pertinent FOCUS groundwater scenarios.

The lower metabolite toxicity endpoints available in the dossiers for propaquizafop, quizalofop-Pethyl and quizalofop-P-tefuryl were used in the risk assessments of propaquizafop.

The acute and short-term risk to birds was assessed as low for the intended uses at tier one, as was the long-term risk to herbivorous birds. Further refinements were required to address the risk to insectivorous birds. The rapporteur Member State provided a refined risk assessment in an addendum after the expert meeting (Addendum, July 2008), based on yellow wagtail (Motacilla flava) as generic focal species feeding on a mixed small-large arthropod diet. A TER value of 14.8 was calculated using wet weight based proportion of different food types (PD) refinements, indicating a low longterm risk to insectivorous birds from the intended uses. The first tier acute and long-term TERs were above the Annex VI trigger for mammals, indicating a low risk from the intended uses. All TERs for secondary poisoning to birds and mammals were above the Annex VI trigger, indicating a low risk from all intended uses. The acute risk from consumption of contaminated drinking water was assessed for the puddle scenario. TERs were above the Annex VI trigger of 10 for both birds and mammals. The risk to herbivorous birds and mammals from plant metabolites was not addressed in the DAR or during the peer review. Mammal toxicity and metabolism data, however, suggest that the risk to herbivorous mammals was covered by the risk assessment for the parent substance. Propaguizatop was found to be very toxic to aquatic organisms, with fish being the most sensitive species tested. A comparable toxicity was identified for the macrophyte *Glyceria fluitans* exposed to the metabolite quizalofop. FOCUS Step 3 exposure refinements were required to identify a low risk to aquatic organisms. For use in sugar beet all FOCUS Step 3 scenarios indicated a low risk to aquatic organisms, whereas only 3 out of 5 scenarios for spring use in oilseed rape and 2 out of 6 in winter oilseed rape indicated a low risk to aquatic organisms. The risk to sediment dwellers and the risk from bioaccumulation were assessed as low. The risk to non-target arthropods needed to be refined further to address the in-field risk to Aphidius rhopalosiphi. A no-spray buffer zone of 5 m was required to identify a low risk to the non-target plants, based on the most sensitive vegetative vigour endpoint for oat.

The risk to bees, earthworms, biological methods for sewage treatment and other soil non-target macro- and micro-organisms was assessed as low.

Key words: propaquizafop, quizalofop-P, peer review, risk assessment, pesticide, herbicide

EFSA Scientific Report (2008) 204, 1-171 Conclusion on the pesticide peer review of propaquizafop

TABLE OF CONTENTS

Summary 1					
	f Contents				
	ound				
The Ac	tive Substance and the Formulated Product	. 10			
Specific	c Conclusions of the Evaluation				
1.	Identity, physical/chemical/technical properties and methods of analysis	. 11			
2.	Mammalian toxicology				
2.1.	Absorption, Distribution, Excretion and Metabolism (Toxicokinetics)	. 13			
2.2.	Acute toxicity	. 13			
2.3.	Short-term toxicity	. 13			
2.4.	Genotoxicity	. 14			
2.5.	Long-term toxicity	. 14			
2.6.	Reproductive toxicity	. 14			
2.7.	Neurotoxicity	. 15			
2.8.	Further studies	. 15			
2.9.	Medical data	. 16			
2.10.	Acceptable daily intake (ADI), acceptable operator exposure level (AOEL) and acute				
referen	ce dose (ARfD)	. 16			
2.11.	Dermal absorption				
2.12.	Exposure to operators, workers and bystanders				
3.	Residues				
3.1.	Nature and magnitude of residues in plant				
3.1.1.	Primary crops				
3.1.2.	Succeeding and rotational crops				
3.2.	Nature and magnitude of residues in livestock				
3.3.	Consumer risk assessment				
3.4.	Proposed MRLs				
4.	Environmental fate and behaviour				
4.1.	Fate and behaviour in soil				
4.1.1.	Route of degradation in soil				
4.1.2.	Persistence of the active substance and their metabolites, degradation or reaction products				
4.1.3.	Mobility in soil of the active substance and their metabolites, degradation or reaction				
4.2.	Fate and behaviour in water				
4.2.1.	Surface water and sediment				
4.2.2.	Potential for ground water contamination of the active substance their metabolites,				
degradation or reaction products					
4.3.	Fate and behaviour in air				
5.	Ecotoxicology				
5.1.	Risk to terrestrial vertebrates				
5.2.	Risk to aquatic organisms				
5.3.	Risk to bees				
5.4.	Risk to other arthropod species				
5.5.	Risk to earthworms				
5.6.	Risk to other soil non-target macro-organisms				
5.7.	Risk to soil non-target micro-organisms				
5.8.	Risk to other non-target-organisms (flora and fauna)				
5.9.	Risk to biological methods of sewage treatment				
6.	Residue definitions	. 37			

List of studies to be generated, still ongoing or available but not peer reviewed	42
Conclusions and Recommendations.	44
Critical areas of concern	48
Appendix 1 – Amalgamated list of endpoints for the active substance and the representative	
formulation	49
Appendix 2 – Abbreviations	167
Appendix 3 – Used compound code(s)	170

BACKGROUND

Commission Regulation (EC) No 1490/2002 laying down the detailed rules for the implementation of the third stage of the work program referred to in Article 8(2) of Council Directive 91/414/EEC and amending Regulation (EC) No 451/2000 as amended by Commission Regulation (EC) No 1095/2007, regulates for the European Food Safety Authority (EFSA) the procedure of evaluation of the draft assessment reports provided by the designated rapporteur Member State. Propaquizafop is one of the 79 substances of the third stage, part A, covered by the Regulation (EC) No 1490/2002 designating Italy as rapporteur Member State.

In accordance with the provisions of Article 10(1) of the Regulation (EC) No 1490/2002, Italy submitted the report of its initial evaluation of the dossier on propaquizafop, hereafter referred to as the draft assessment report, received by the EFSA on 22 September 2005. Following an administrative evaluation, the draft assessment report was distributed for consultation in accordance with Article 11(2) of the Regulation (EC) No 1490/2002 on 12 May 2006 to the sole notifier Makhteshim Agan as identified by the rapporteur Member State and on 11 July 2006 to the Member States.

The comments received on the draft assessment report were evaluated and addressed by the rapporteur Member State. Based on this evaluation, the EFSA identified and agreed on lacking information to be addressed by the notifier as well as issues for further detailed discussion at expert level.

Taking into account the requested information received from the notifier, a scientific discussion took place in experts' meetings in June – July 2008. The reports of these meetings have been made available to the Member States electronically.

A final discussion of the outcome of the consultation of experts took place during a written procedure with the Member States in October 2008 leading to the conclusions as laid down in this report.

During the peer review of the draft assessment report and the consultation of technical experts no critical issues were identified for consultation of the Scientific Panel on Plant Protection Products and their Residues (PPR).

In accordance with Article 11c(1) of the amended Regulation (EC) No 1490/2002, this conclusion summarises the results of the peer review on the active substance and the representative formulation evaluated as finalised at the end of the examination period provided for by the same Article. A list of the relevant endpoints for the active substance as well as the formulation is provided in appendix 1.

The documentation developed during the peer review was compiled as a peer review report comprising of the documents summarising and addressing the comments received on the initial evaluation provided in the rapporteur Member State's draft assessment report:

- the comments received:
- the resulting reporting table (revision 1-1; 9 April 2008); .

as well as the documents summarising the follow-up of the issues identified as finalised at the end of the commenting period:

- the reports of the scientific expert consultation;
- and the evaluation table (revision 2-1; 18 November 2008).

Given the importance of the draft assessment report including its addendum (compiled version of September 2008 containing all individually submitted addenda) and the peer review report with respect to the examination of the active substance, both documents are considered respectively as background documents A and B to this conclusion.

THE ACTIVE SUBSTANCE AND THE FORMULATED PRODUCT

Propaquizafop is the ISO common name for 2-isopropylidenamino-oxyethyl (R)-2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy]propionate (IUPAC).

Propaquizafop is an ester variant of the active substance quizalofop-P which is included in the third stage Part B of the review programme. The EFSA wrote a conclusion on quizalofop-P¹⁰ based on the DARs which were submitted on the ester variants guizalofop-P-ethyl¹¹ and guizalofop-P-tefuryl¹².

Propaguizatop, belongs to the class of aryloxyphenoxypropionic herbicides (commonly called "FOPs") such as diclofop-P and fluazifop-P. They are taken up via leaves and hinder the *de novo* synthesis of fatty acids by inhibition of the enzyme acetyl-CoA carboxylase (ACCase).

The representative formulated product for the evaluation was 'Agil 100 EC', an emulsifiable concentrate (EC).

The evaluated representative uses are as a herbicide on sugar beet and oilseed rape. Full details of the good agricultural practice (GAP) can be found in the attached list of endpoints.

 ¹⁰ (*R*)-2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy]propionic acid
¹¹ ethyl (2*R*)-2-{4-[(6-chloroquinoxalin-2-yl)oxy]phenoxy}propanoate

¹² (RS)-tetrahydrofurfuryl (R)-2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy]propionate

SPECIFIC CONCLUSIONS OF THE EVALUATION

1. Identity, physical/chemical/technical properties and methods of analysis

At the moment no minimum purity of propaquizafop as manufactured can be given because further clarification is needed. In addition, clarification is necessary with respect to the proposed maximum content of the significant impurities.

The technical material contains toluene, which has to be regarded as a relevant impurity. The maximum content in the technical material should not be greater than 5 g/kg.

It was noted that in previous technical material production, impurities CGA 320116 and CGA 328714 were present but they were not analysed for in the most recent production batches. The meeting of experts questioned what the change in manufacturing process was and the relevance of these two impurities. This issue needs to be addressed further and a data gap has been set. The meeting of experts also questioned what the change of manufacturing process was that resulted in the reduction of the levels of the relevant impurity Ro 41-5259.¹³ The meeting of experts also considered that it would be necessary to analyse current production batches for this compound at an appropriately low level. The possible formation of nitrosamines during the manufacturing process also needs to be addressed.

The content of propaquizafop in the representative formulation is 100 g/L (pure).

Beside the specification, the assessment of the data package revealed no issues that need to be included as critical areas of concern with respect to the identity, physical, chemical and technical properties of propaquizafop or the respective formulation. However, the following data gaps were identified:

- Hydrolysis study in accordance with EEC A7
- Oxidising properties of the Plant Protection Product (PPP)
- Surface tension of the formulation at 25 °C for R65 classification
- Notifier to reformulate the PPP to comply with the general FAO specification for persistent foam or demonstrate under field conditions that the formation of foam is not an issue
- Notifier to reformulate the PPP so that a stable emulsion can be formed or demonstrate under field conditions this is not an issue
- Method of analysis for the formulation that is capable of separating the *R* and *S* isomers
- Storage stability study with analysis for *R* and *S* isomer before and after storage
- It should be explained why the high temperature of incineration is required for destruction of the active substance

¹³ 2-isopropylideneamino-oxyethyl (R)-2-[4-(7-chloroquinoxalin-2-yloxy)phenoxy]propionate

The meeting of experts also wished to highlight that the formulation is not stable at low temperatures and this should be taken in to account. It should also be noted that the meeting of experts considered that the performance of the formulation is poor.

The main data regarding the identity of propaquizafop and its physical and chemical properties are given in appendix 1.

There are insufficient analytical methods as well as methods and data relating to physical, chemical and technical properties to ensure that quality control measurements of the plant protection product are possible.

The meeting of experts was not able to conclude on any of the analytical methods because none of them complied with the residue definitions proposed in the DAR. In addition, questions that were raised during the peer review process remain unanswered. It is likely that at least some new methods will be required as they will not only have to be validated for propaquizafop but also for the other esters of quizalofop-P. Consequently all the methods will have to be reconsidered and a data gap has been identified.

2. Mammalian toxicology

Propaquizafop was discussed in the PRAPeR meeting of experts held in Parma in July 2008 (PRAPeR 54 subgroup 1).

The meeting could not conclude on the compliance of batches tested in mammalian toxicity tests to the proposed specification as the impurity profile of key batches was not available. Due to the lack of toxicological information it was not possible to conclude on the relevance of some impurities (CGA 290292, CGA 287422, CGA 320116 and CGA 328714). Toluene was regarded as relevant, but of no concern at the amount presented in the specification (max. 5 g/kg). Concerning impurity Ro 41-5259, it was not possible to conclude because of missing information, however, due to its toxicological properties (mutagenic) this impurity should be considered relevant.

The meeting on residues sent a question about the toxicity of the common metabolites of propaquizafop, quizalofop-P-ethyl and quizalofop-P-tefuryl observed in the plant metabolism studies. In particular:

• Metabolites with the chloroquinoxalin-phenoxy moiety: quizalofop, quizalofop-phenol¹⁴ and hydroxy-quizalofop.¹⁵

¹⁴ 2-[4-(6-chloroquinoxalin-2-yloxy)phenol]

¹⁵ (*R*)-2-[4-(6-chloro-3-hydroxyquinoxalin-2-yloxy)phenoxy]propionic acid

• Metabolites with the chloroquinoxalin moiety: hydroxy-quinoxalin and dihydroxychloroquinoxalin.

All the metabolites were not considered of higher toxicity than parent, and were "covered" by the reference values set for the parent. It was not possible based on the available information to provide specific toxicological profiles for individual metabolites.

2.1. ABSORPTION, DISTRIBUTION, EXCRETION AND METABOLISM (TOXICOKINETICS)

Propaquizafop is absorbed over a long period, and blood concentrations of radioactivity do not start to decline until approximately 8 - 10 hours after dosing. Propaquizafop and its metabolites are widely distributed into tissues, with the highest concentrations in liver and kidneys. No potential for accumulation was evidenced. Maximum excretion occurs during the first 48 hours after treatment. After repeated administration, tissue concentrations of radioactivity attained steady state after approximately 14 days after the end of treatment.

The main metabolic pathways of propaquizafop were by hydrolysis to propaquizafop acid, then undergoing subsequent hydroxylation, loss of the propionyl moiety, or loss of the phenoxy acid moiety. Some of the metabolites were formed by a combination of these pathways. Small amounts of unchanged propaquizafop were excreted in faeces.

During the PRAPeR meeting, the oral absorption value of propaquizafop was discussed. In the DAR the rapporteur Member State proposed an almost complete absorption. However, data on biliary and urinary excretion gave indications that 65 - 70% of administered dose was absorbed within 24 hours. The meeting considered 65% as more appropriate based on the available data.

2.2. ACUTE TOXICITY

Propaquizafop shows a low acute toxicity via the oral and dermal routes, as well as the inhalation route (oral LD_{50} 5000 mg/kg bw, dermal LD_{50} 2000 mg/kg bw, inhalation $LC_{50}>2500$ mg/m³). Propaquizafop is non-irritating to the skin and eyes. Skin sensitisation tests in guinea pigs gave positive results (R43 "May cause sensitisation by skin contact" was proposed).

2.3. SHORT-TERM TOXICITY

Propaquizafop was tested in repeated dose studies in rats, mice and dogs. Liver was shown to be the target organ. The NOAELs for rats and mice on the basis of liver effects were 6.25 and 10 mg/kg bw/day, respectively (LOAELs 25 and 30 mg/kg bw/day). The dog was less sensitive and in a 1-year study no treatment-related effects were seen up to the highest dose level of 20 mg/kg bw/day. The meeting agreed that the 90-day dog study NOAEL was 40 mg/kg bw/day (LOAEL 60 mg/kg bw/day) and the 1-year dog study NOAEL was 20 mg/kg bw/day (the highest dose tested, considered the relevant NOEL in dog). Following dermal administration of propaquizafop to rats, a NOAEL of

250 mg/kg bw/day was established, based on signs of systemic toxicity, including the liver as target organ, at higher dose levels.

2.4. **GENOTOXICITY**

In cytogenetic tests with a pilot production batch propaquizafop showed positive results, due to the presence of a genotoxic impurity formed in the early manufacturing process, which was later modified in order to avoid its formation. Tested with batches representative of the proposed specification propaquizafop did not show any genotoxic potential.

2.5. LONG-TERM TOXICITY

In a chronic oral toxicity study, the liver was identified as the target organ (effects on liver enzymes, liver weights and non-neoplastic histopathological changes). Increased incidences of hepatocellular adenomas and carcinomas were seen in both rats and mice. In one study in rats, an increased incidence of Leydig cell tumors was also noted. Mechanistic studies performed in rats and mice indicate that propaquizafop acts as a peroxisome proliferator. Additionally, haematological investigations revealed changes of red cell parameters in rats and mice. There were increased kidney, heart and adrenal gland weights and decreased testes weights in high dose rats (100 mg/kg bw/day). Histopathological examinations showed angiectasis, purulent nephritis and papillary necrosis in kidneys. Leydig cell hyperplasia, aspermia, edema and tubular atrophy were seen in high dose male rats beside an increased incidence of Leydig cell tumours. In mice, there was also an increase of heart and adrenal gland weights at and above 30 mg/kg bw/day, and treatment-related histopathological findings of a chronic renal disease were seen at 300 mg/kg bw/day. On the basis of the available studies, the relevant NOAELs were set at 5 mg/kg bw/day for rats and 1.5 mg/kg bw/day for mice (LOAELs 25 mg/kg bw/day and 7.5 mg/kg bw/day, respectively).

Based on the occurrence of malignant tumours in two species (hepatocellular adenomas and carcinomas in rats and mice) and an increased incidence of Leydig cell tumours in rats, proposal for classification and labelling of propaquizafop as R40 "Limited evidence of a carcinogenic effect" was considered during the meeting. The proposed mechanism for liver tumours (peroxisome proliferation) is not relevant for humans, and these alone would not lead to R40. The mechanism for the formation of the Leydig cell tumours was unknown. The experts expressed some concerns regarding the notifier statement that these tumours were not relevant to humans. There were also no historical control data presented for these tumours. Therefore due to lack of information the meeting considered the Leydig cell tumours as relevant; and based on this, classification as R40, Carc. Cat. 3 was proposed.

2.6. Reproductive toxicity

In a multigeneration reproductive toxicity study, there were no treatment-related effects on mating performance, fertility index, gestation length or gestation index for either the F0 or F1 generations for either pairing. Litter size, live birth, viability and lactation indices were comparable among groups for

all matings. The rate of physical and functional development of the F1A pups was not affected by treatment. In the F2A pups at 15 mg/kg bw/day, there was a delay in eye and ear opening. Histopathological findings of male and female adults revealed a slight increase in centrilobular hypertrophy and congestion at 15 mg/kg bw/day in both generations. Slightly increased renal calcification and haemosiderosis in the spleen were observed in females at the high dose. No changes in reproductive organs were noted. The relevant reproductive NOAEL was 15 mg/kg bw/day, whereas the relevant maternal and offspring NOAEL was 3 mg/kg bw/day.

In a rat developmental study, maternal body weight gain was decreased at 125 mg/kg bw/day during treatment, as well as body weights in 21-day old foetuses. Numbers of implantations, corpora lutea and viable foetuses were comparable among groups. No treatment-related skeletal malformations were observed in any dose group. Signs of delayed ossification were observed in foetuses of dams dosed with 125 mg/kg bw/day. At 125 mg/kg bw/day, peri- and early postnatal pup loss was observed, accompanied by increased gestation time. The NOAEL for developmental toxicity was 20 mg/kg bw/day based on an increased incidence of dilated renal pelvis up to 50 mg/kg bw/day. The NOAEL for maternal toxicity was 50 mg/kg bw/day due to decreased body weight gain at 125 mg/kg bw/day.

In rabbits, body weight gain was reduced in the females of all dose groups during treatment. Total number of resorptions related to implantations were increased in all treatment groups, mainly during the embryonic developmental stage although without a clear dose related trend. There were no treatment related malformations or developmental changes reported in the study. The relevant maternal and developmental NOAELs were 6 mg/kg bw/day and 18 mg/kg bw/day, respectively.

2.7. NEUROTOXICITY

Propaquizafop is not considered to act on the nervous system. The results of the toxicity studies performed in different species receiving single and repeated doses of propaquizafop revealed no neurotoxic action.

2.8. FURTHER STUDIES

Impurity CGA 289740 induced a two-fold increase in revertants colonies in *S. typhimurium* TA98, only in the presence of exogenous metabolic activation. Due to the lack of any relationship with the dose applied, the biological significance of this finding is equivocal.

Impurity CGA 289742 did not induce gene mutations in the strains of *S. typhimurium* and *E. coli* tested.

2.9. MEDICAL DATA

Monitoring of workers' health and safety during the manufacturing and formulating processes of propaquizafop included periodical check of the workplace, checking protective equipment, periodic medical check-ups of the workers involved in the manufacturing process. There has been no evidence or indications of health effects due to propaquizafop. A literature search was performed concerning clinical cases, poisoning incidents, general population exposure, epidemiological studies: no data could be retrieved.

2.10. ACCEPTABLE DAILY INTAKE (ADI), ACCEPTABLE OPERATOR EXPOSURE LEVEL (AOEL) AND ACUTE REFERENCE DOSE (ARFD)

<u>ADI</u>

The meeting agreed with the proposal made by the rapporteur Member State to use the NOAEL of 1.5 mg/kg bw/day from the mouse long-term study as basis for setting the ADI, resulting in an ADI of **0.015 mg/kg bw/day** (SF 100).

AOEL

During the meeting the AOEL value was discussed. The relevance of the delayed eye opening seen in the rat reproductive study was considered. After further reflection the effect was not regarded as severe enough at this dose level to warrant setting an AOEL on this. The meeting therefore proposed to use the 6.25 mg/kg bw/day from the rat 90 day study, as the basis for the AOEL, this resulted in an AOEL of **0.04 mg/kg bw/day**, SF 100 and limited oral absorption (65%).

ARfD

The need for an ARfD was discussed during the meeting. Based on the acute toxicological profile of propaquizafop, it was agreed this reference value was not required.

2.11. DERMAL ABSORPTION

The rapporteur Member State proposed a default of 10%, based on limited data (no information is available for the dilution). An *in vitro* study was summarised using pig skin and rat skin. The experts had some doubts concerning the validity of the study. It was discussed whether the same values agreed for quizalofop-P-ethyl and quizalofop-P-tefuryl should be used. However, it was considered that the physical-chemical properties of propaquizafop were not sufficiently similar. The meeting agreed 10% could be used as default for the concentrate and dilution (based on physical-chemical properties) supported by the *in vitro* pig study.

2.12. EXPOSURE TO OPERATORS, WORKERS AND BYSTANDERS

'Agil 100 EC' contains 100 g/L propaquizafop. It is used on sugar beet and oilseed rape (foliar spray). The maximum application rate is 0.2 kg a.s./ha in spray volume of 200 - 500 litres/ha. Operator exposure assessment was performed with the German and the UK POEM models.

Operator exposure

Model	Application method (crop)	Systemic exposure (mg/kg bw/day)		% of systen	nic AOEL
		No PPE	PPE	No PPE	PPE*
UK POEM	Tractor mounted, hydraulic boom and nozzles; 1 L wide neck container	0.2369	0.0284	592	71
UK POEM	Tractor mounted, hydraulic boom and nozzles; 5 L wide neck container	0.1036	0.0151	259	38
UK POEM	Tractor mounted, hydraulic boom and nozzles; 20 L wide neck container	0.0786	0.0126	196	31.5
German	Tractor mounted spray application	0.025	0.001	62.5	2.5

* PPE considered: UK POEM: gloves during mixing/loading and application. German model: gloves, standard protective equipment (SPE), sturdy footwear during mixing/loading and application.

The operator exposure assessment submitted by the rapporteur Member State showed exposure levels below the AOEL even without the use of PPE (German model) and was accepted at the meeting. No assessment was performed for hand held applications.

Worker exposure:

The "Uniform Principles for safeguarding workers" [Krebs, B. *et al.* Uniform Principles for Safeguarding the Health of Workers Re-entering Crop Growing Areas after Application of Plant Protection Products] were used to estimate exposures to the active substance for workers not wearing personal protective equipment. The Dislodgeable Foliar Residue (DFR) was estimated using the conservative default assumption that an application rate of 1 kg as/ha corresponds to an initial DFR of 1 μ g/cm². A default transfer factor (TF) of 30000 cm²/hr for a worker with no protective clothing was considered. Based on an 8-hour workday, the daily dermal exposures for a 60 kg worker were estimated to be 267 and 13% of the AOEL without and with PPE, respectively.

During the meeting it was noted that the worker exposure was performed with a TF of $30000 \text{ cm}^2/\text{hr}$ which represents an extreme worst case based on the intended uses. It was agreed that it was not necessary to re-perform this. The meeting requested that this is made this clear in the EFSA conclusion.

EFSA note: As the TF of 30000 cm²/hr considered was at least 6-fold the correct value, it can be estimated that exposure during re-entry activities after application of 'Agil 100 EC' is below the AOEL even for a worker without PPE (approximately 50% of the AOEL).

Bystander exposure:

A bystander exposure presented in the DAR was performed using Ganzelmeier¹⁶ and this was agreed as acceptable. Bystander exposure was estimated assuming that bystanders stand 5 metres from the site of application. Worst-case bystander exposures were calculated using operator exposure estimates for field crop sprayer application to sugar beet and oilseed rape. On this basis, a bystander standing at 5 meters from the edge of a field being sprayed with 'Agil 100 EC' in the worst case would be exposed to a systemic dose 10% of the AOEL.

3. Residues

Propaquizafop was discussed at the PRAPeR experts' meeting for residues (PRAPeR 55, round 11) in July 2008. Propaquizafop is an ester variant of the active substance quizalofop-P, and two further ester variants of quizalofop-P were evaluated during this PRAPeR meeting, namely quizalofop-P-ethyl and quizalofop-P-tefuryl. During the peer review process, it was clear that, once quizalofop is formed after hydrolysis of the ester link, the metabolic pathways of these three esters in plants and animals are similar.

3.1. NATURE AND MAGNITUDE OF RESIDUES IN PLANT

3.1.1. PRIMARY CROPS

The metabolism of propaquizafop has been investigated in cotton, soybean, lettuce and sugar beet, representing three groups of crops; oilseed/pulse crops, leafy crops and root/tuber crops. Studies were performed using ¹⁴C-propaquizafop either labelled on the phenyl or the quinoxaline moiety and with application rates representative of the supported uses (103 to 298 g a.s./ha).

The metabolism proceeds primarily by the hydrolysis of the ester link to yield quizalofop followed by loss of the propionyl moiety leading to the quizalofop-phenol metabolite, these metabolites being also observed as conjugated in soya and cotton. Further metabolism occurs by hydroxylation of the quinoxaline moiety giving the hydroxy-quizalofop and hydroxy-quizalofop-phenol¹⁷ metabolites. In addition, and to a limited extent, the presence in low proportions of hydroxy-quinoxaline¹⁸,

¹⁶ Ganzelmeier H, Rautmann D, Spangenberg R, Streloke M, Herrmann M, Wenzelburger H-J, Walter HF (1995) Studies on the spray drift of plant protection products. *Mitteilungen aus der Biologischen Bundensanstalt für Land- und Forstwirtschaft Berlin-Dahlem. Heft 305, 1995.*

¹⁷ 4-(3-hydroxy-6-chloroquinoxalin-2-yloxy)phenol

¹⁸ 6-chloroquinoxalin-2-ol

dihydroxy-quinoxaline¹⁹ and phenoxy acid²⁰ metabolites indicated a cleavage of the oxygen bond between the phenyl and quinoxaline parts of the molecule. Extensive incorporation of radioactivity in endogenous plant materials was also demonstrated in sugar beet. The plant metabolism was similar to rat metabolism and the metabolites formed in plants were covered by the toxicological studies.

The metabolite pattern was dominated by quizalofop, which generally represents the major constituent of the residue, accounting for 5% to 35% of the TRR at harvest, the parent compound being mainly observed in significant proportions in immature plant samples collected within 15 days following the application. However, propaquizafop was also present in mature soybean seeds and sugar beets roots in similar amount to quizalofop accounting for *c.a.* 7% of the TRR. In the sugar beet leaves and roots, the metabolites quizalofop-phenol, hydroxy-quizalofop-phenol and the hydroxyl-quinoxaline and dihydroxy-quinoxaline were detected in similar proportions to those of propaquizafop and quizalofop. However, given the overall low residue levels expected in leaves and roots at harvest when propaquizafop is applied according to the representative uses, the meeting was of the opinion not to include these metabolites in the residue definition. Considering that only a small part of the extracted radioactivity was characterized in leaves and roots and that only one label was investigated, the rapporteur Member State was asked to check if more information is available in the study report on the uncharacterized radioactivity, otherwise a new metabolism study on root crop using the phenyl label should be requested.

In the cotton study, the experts were of the opinion that the residues were not sufficiently investigated since only a small part of the extracted radioactivity was identified in the green plant parts and there was no characterisation of residues present in the seeds, where TRR accounted for 0.05 to 0.08 mg/kg. Consequently, the rapporteur Member State was asked whether more information is available in the metabolism study report concerning the residues in seeds and the extracted but not characterised radioactivity, otherwise a new study on oilseed crop should be requested with a special focus on the nature of the radioactivity in seeds. Moreover, the notifier was asked to clarify how the immature cotton plant samples were stored between sampling and analyses, since this information was missing from the report.

Finally, the meeting of experts discussed whether the unidentified polar metabolite M1 detected in lettuce and accounting for 23 to 30% TRR was sufficiently characterised. Taking into account the clarifications provided by the rapporteur Member State in the evaluation table, the meeting agreed that this metabolite results from incorporation of the ¹⁴C in a high molecular plant constituent and that this metabolite is sufficiently characterised. In conclusion, and provisionally, the experts proposed for propaquizafop the following residue definitions for monitoring and risk assessment:

"Sum of propaquizafop and quizalofop, expressed as quizalofop (sum of isomers)".

¹⁹ 6-chloroquinoxaline-2,3-diol

 $^{^{20}}$ (*R*)-2-(4-hydroxyphenoxy)-propionic acid

In addition and considering the metabolism studies performed with the three quizalofop esters, the meeting of experts concluded that a common residue definition for monitoring and risk assessment can be proposed for propaquizafop, quizalofop-P-ethyl and quizalofop-P-tefuryl as:

"Sum of quizalofop-esters, quizalofop and quizalofop conjugates expressed as

quizalofop (sum of isomers)".

This definition should remain provisional, pending the submission and the evaluation of the requested additional information on the toxicological relevance of the phenoxy metabolites observed in the quizalofop-P-ethyl studies. The EFSA is of the opinion that there is no need to include the quizalofop conjugates in the residue definition for monitoring (see EFSA conclusion on the peer review of quizalofop-P).

Supervised residue trials were submitted to support representative uses on rape seed and sugar beet in Northern and Southern Europe. Samples were analysed using a method covering propaguizatop, quizalofop and quizalofop-phenol. Although this method was not strictly in line with the residue definition, results obtained were considered as valid since MRL proposals were based on residue levels at or close to the LOQ and the scope of the analytical method was wider than the proposed residue definitions. In order to confirm the validity of the trials selected for the MRL setting, the rapporteur Member State was asked to report in an addendum the growth stage at each application for each individual trial. On rapeseed, 18 trials in compliance with the critical GAP were submitted for Northern Europe, the residues in seeds at harvest being in the range of 0.02 to <0.05 mg/kg. For Southern Europe, only two trials were provided, one conducted with a 1.8X application rate and residues below the LOQ. Taking into account the low residue situation and assuming that rapeseed is not a major crop in Southern EU, the experts concluded that no additional trials are needed on rapeseed. No data were available for whole rape plant, the notifier stating in the DAR that it was not intended to support a use on rape forage. On sugar beet, 37 trials in compliance with the critical GAP were provided for Northern and Southern Europe where residues in roots were consistently below the LOQ (<0.02 or <0.05 mg/kg) and in the range of <0.02 to 0.11 mg/kg in the leaves. The results of supervised residue trials can be considered as reliable on the basis of storage stability studies demonstrating that residues of propaguizafop, guizalofop and guizalofop-phenol were stable under deep freeze storage conditions for at least 2 years in soybean, rapeseed and tomato matrices. Considering the low residue levels detected in the raw agricultural products (<0.05 mg/kg) the behaviour of the residues in processing commodities was not investigated.

3.1.2. SUCCEEDING AND ROTATIONAL CROPS

A rotational crop study was performed using ¹⁴C-propaquizafop labelled on the quinoxaline moiety and applied two times as a foliar treatment on soybean plants used as a primary crop (total dose 2.3X). Spring wheat, spinach and sugar beet were sown as rotational crops 30, 120 and 270 days after the soybean harvest. At harvest, total radioactive residues above 0.02 mg/kg were only detected in spinach and wheat chaff at day 30 (0.039 and 0.96 mg/kg respectively) and in wheat straw for each plant back interval (0.096 to 0.167 mg/kg). Propaquizafop was not observed in the plant parts

investigated and the detected metabolites (quizalofop, quizalofop-phenol and their hydroxy derivatives) have also been identified in the primary crop studies, suggesting a similar metabolic pathway in both primary and rotational crops. Considering the additional information provided by the rapporteur Member State in the evaluation table, it was agreed that a large portion of the radioactivity in straw (up to 56% TRR) was incorporated in the lignin fraction. Finally, it was concluded that no significant residues of propaquizafop or its metabolites are expected in rotational crops.

3.2. NATURE AND MAGNITUDE OF RESIDUES IN LIVESTOCK

Metabolism studies in lactating goat and laying hen have been provided. They were conducted using the parent compound, although the major residue the livestock are exposed to consists of quizalofop. Nevertheless, since these studies demonstrate that propaquizafop is rapidly metabolised to quizalofop, which was the major constituent of the residue in the investigated matrices, the use of propaquizafop was considered as acceptable. The meeting of experts concluded that no animal residue definitions can be established on the basis of these studies since the characterisation/identification of the radioactivity was not sufficiently investigated in different matrices. In the goat study, the nature of the residues was not determined in fat despite the fat soluble properties of the active substance and the significant level of 0.275 mg/kg. In milk, analyses were performed using a common moiety method that analysed propaquizafop, quizalofop and quizalofop-phenol as 6-chloro-2-methoxyquinoxaline and hence the exact nature of the residues remained unknown. In the same way, in the hen study, residues were not sufficiently identified in fat and egg yolk.

Finally, based on the representative uses supported by the notifier and the low residues levels observed in rape seed and sugar beet, the experts agreed that there is no need to set a residue definition for propaquization in animal products at present. However, it would be necessary to submit a new goat metabolism study to clarify the nature of the residues in milk and fat if further additional uses lead to an increase in the residue intake by animals.

Considering the table B.7.8.3 in the addendum 3 of June 2008 provided by the rapporteur Member State and summarizing the metabolite distribution in rat and goat for quizalofop-P-ethyl, quizalofop-P-tefuryl and propaquizafop, the experts discussed whether a metabolism study on pig should be requested. Comparison of metabolism was only possible for propaquizafop and quizalofop-P-ethyl since the dosages for quizalofop-P-tefuryl in rat were performed at different time points. Qualitatively, the metabolism in rats and ruminants was similar but differences were observed quantitatively. For both active substances, higher residues were detected in rat than in the goat on an equivalent mg/kg bw basis, some differences being of a 10-fold magnitude. As a result, it was concluded that MRLs set on the basis of ruminant feeding studies may not cover the residue levels that might be found in non-ruminant species. However, and before asking for a pig metabolism study, it was suggested to ask the notifiers to provide explanations for these quantitative differences and why they were of the opinion that these differences are of no concern. Concerning propaquizafop, the

notifier is informed that they would have to consider these requests if new uses beyond those supported in this review lead to a significant residue intake by animals.

No livestock feeding study was provided considering that the trigger value of 0.1 mg/kg in diet was not exceeded. Nevertheless, the rapporteur Member State was asked to recalculate the dietary burden by animals since it was not clear what "grains" refer to in the calculation presented in the DAR. The request made by one expert to include the rape forage in the animal burden calculation has not to be taken into account as it was clearly stated in the DAR that the notifier will not support such a use.

3.3. CONSUMER RISK ASSESSMENT

No chronic risk for the consumer resulting from the use of propaquizafop according to the representative uses on sugar beet and oilseed rape is expected since the Theoretical Maximum Daily Intake (TMDI) using various calculation models (WHO, UK, FR and DE) was at most 21% of the ADI (0.015 mg/kg bw/d) using the UK model. No acute risk evaluation was performed as the PRAPeR meeting 54 on mammalian toxicology concluded that the setting of an ARfD is not required for propaquizafop.

However the experts pointed out that it should be necessary to perform a combined consumer risk assessment which takes into account all the crops the different quizalofop esters are registered on and which considers the respective toxicological endpoints set for each individual ester.

3.4. PROPOSED MRLS

Based on the available supervised residue trials and the proposed residue definition, the following MRLs were proposed:

Sugar beet 0.05* mg/kg Rape seed 0.05* mg/kg (restriction of use: No use on rape seed forage as animal feed) * MRL is proposed at the LOQ

These MRLs are consistent with the proposals done for sugar beet and rape seed considering the quizalofop-P-ethyl and quizalofop-P-tefuryl GAP.

4. Environmental fate and behaviour

Propaquizafop was discussed at the PRAPeR experts' meeting for environmental fate and behaviour PRAPeR 52 (June 2008), on basis of the DAR (July 2005) and a revised DAR Vol3 B8 (March 2008). As indicated in the physical-chemical section, propaquizafop is an ester variant of the active substance quizalofop-P. During the peer review process, from a comparison of the routes of degradation of the ester variants propaquizafop, quizalofop-P-ethyl and quizalofop-P-tefuryl in the environmental compartments, it was clear that once quizalofop is formed, the degradation pathways

are very similar. In particular, the following major (>10% AR) metabolites²¹ are common to two or all of the three ester variants in the different environmental compartments:

Quizalofop aerobic soil degradation: water: sediment:	quizalofop-P-tefuryl, quizalofop-P-ethyl, propaquizafop quizalofop-P-tefuryl, quizalofop-P-ethyl, propaquizafop quizalofop-P-tefuryl, quizalofop-P-ethyl, propaquizafop
Hydroxy-quizalofop aerobic soil degradation: sediment:	quizalofop-P-tefuryl, quizalofop-P-ethyl, propaquizafop propaquizafop
Dihydroxy-quinoxaline aerobic soil degradation: sediment:	quizalofop-P-tefuryl, quizalofop-P-ethyl, propaquizafop quizalofop-P-tefuryl, propaquizafop

The EFSA and the Member States considered it fundamental for the exposure assessment to combine the three data sets for these metabolites available in the DARs on propaquizafop, quizalofop-P-ethyl and quizalofop-P-tefuryl in order to derive a single set of endpoints for the fate properties of each metabolite. This exercise was performed during the meeting of experts PRAPeR 52 and led to an agreed list of endpoints for metabolites quizalofop, hydroxy-quizalofop and dihydroxy-quinoxaline (referred to as the amalgamated list of endpoints in this conclusion). It was agreed that this amalgamated list of endpoints should be the basis for the exposure assessment of the above mentioned metabolites. It was decided also to draft two conclusions, one for propaquizafop and one for quizalofop-P-ethyl and quizalofop-P-tefuryl together. The present conclusion reflects the outcome of the consultation of experts where the consistency between the endpoints used for predicted environmental concentration (PEC) calculations reported in the propaquizafop DAR and the agreed endpoints was considered.

4.1. FATE AND BEHAVIOUR IN SOIL

4.1.1. ROUTE OF DEGRADATION IN SOIL

The route of degradation of propaquizafop was investigated under aerobic conditions $20 - 22^{\circ}$ C and 40 - 60% maximum water holding capacity (MWHC) in five soils using two different labelling positions (hydroquinone or quinoxaline). The soils covered a range of characteristics (pH 5.0 to 7.7, organic carbon 0.78 to 3.2%, clay 4.2 to 26.8%) but no important differences in the route of degradation were observed. Some of the soils were also investigated under different incubation conditions (lower soil moisture content and/or lower temperature, and high application rate).

 $^{^{21}}$ A key to the different synonym names, systematic name and the proposed names used for the individual metabolites is included in Appendix 3.

Degradation of propaquizafop proceeded rapidly via biological hydrolysis of the ester group (sterile soils showed no degradation), to form the main metabolite quizalofop (max. 88% AR at 1d). Quizalofop dissipates via several oxidative steps yielding quizalofop-phenol, hydroxy-quizalofop, hydroxy-quinoxaline, hydroxy-quizalofop-phenol and dihydroxy-quinoxaline along with other several minor unidentified polar metabolites. Degradation of the hydroquinone ring also yielded phenoxy acid (<0.1% AR). The majority of the radioactivity was ultimately found as bound residues (up to 48.6% AR after 120 days) and carbon dioxide (up to 44.2% AR after 119 days).

Hydroxy-quizalofop and dihydroxy-quinoxaline exceeded 10% AR in two soils, reaching maxima of 32.6% AR (after 14 days) and 13.7% AR (after 56 days) respectively. Metabolite hydroxy-quinoxaline accounted for >5% AR at two consecutive sampling times (max. 6.7 - 8.8% AR at 7 - 14 days), triggering a groundwater assessment exposure. Quizalofop-phenol exceeded 5% AR on more than two consecutive occasions in soil at 20% MWHC, 20°C, 40% MWHC and 8°C; reaching a maximum of 6.2% AR (1 day). Taking into consideration that quizalofop-phenol is strongly adsorbed to soil particles (see section 4.1.3), the experts from the Member States agreed that an assessment of the potential for groundwater contamination of this metabolite is not necessary.

In a study on the anaerobic metabolism of propaquizafop, its degradation to quizalofop was so rapid during the aerobic phase that the parent compound almost disappeared at the onset of anaerobic conditions (1 - 4% AR). The anaerobic production of carbon dioxide was very low (1.7% AR and 1.7% AR after 61 and 62 days respectively). Degradation of quizalofop was not observed under anaerobic conditions and no metabolites were identified other than those already identified under aerobic conditions.

In a soil photolysis study, propaquizafop degraded rapidly under both light and dark conditions (a first-order DT_{50} value of 38.1 days under light conditions for the combined propaquizafop and quizalofop was determined). The degradation of quizalofop appeared to be enhanced in the irradiated samples suggesting that photodegradation of quizalofop occurs in soil.

4.1.2. PERSISTENCE OF THE ACTIVE SUBSTANCE AND THEIR METABOLITES, DEGRADATION OR REACTION PRODUCTS

The rate of degradation of propaquizafop under aerobic conditions was estimated from the results of the studies described in 4.1.1 above. In one study (Mamouni, 1999a), propaquizafop degraded rapidly forming quizalofop in all the soils and after three days it was detected only at very small quantities (<10% AR). Therefore an exact DT_{50} value was not calculated and DT_{50}/DT_{90} values were concluded to be less than 3 days in all soils. A worst case DT_{50} of 3 days at the FOCUS reference conditions²² (20°C and -10 kPa soil moisture content) was assumed when deriving the appropriate DT_{50} value

²² Using section 2.4.2 of the generic guidance for FOCUS groundwater scenarios, version 1.1 dated April 2002, utilising a Q10 of 2.2 and Walker equation coefficient of 0.7.

from the degradation rates dataset for FOCUS modelling. The data reported in the other two studies (Dieterle, 1987 and Dennis, 1991) were re-fitted to first-order kinetics using the least squares method to be compatible with the first-order degradation kinetics assumed by the FOCUS models. At temperatures in the range $20 - 22^{\circ}$ C and moisture content between 35 and 40% MWHC, the DT₅₀/DT₉₀ values for propaquizafop were in the ranges of 0.09 - 1.4 days and 2 - 56 days respectively.

The rate of degradation values of quizalofop, hydroxy-quizalofop and dihydroxy-quinoxaline were discussed at PRAPeR 52, taking into consideration the results of the studies presented in the DARs for propaquizafop (6 or 3 soils), quizalofop-P-tefuryl (8, 5 or 3 soils) and quizalofop-P-ethyl (6, 3 or 4 soils). With the exception of one study (reported in the quizalofop-P-ethyl DAR) conducted with dihydroxy-quinoxaline applied as the test substance on three soils, all DT_{50} values for these metabolites were estimated from the studies where the parent compounds were applied and these metabolites were present.

Propaquizafop and its principal metabolite quizalofop are stable under sterile soil conditions and it can be concluded that the aerobic metabolism of propaquizafop is due to biological activity.

The reliability of the un-normalised and normalised laboratory degradation rates for the major metabolite quizalofop was discussed at the meeting of experts. The estimated DT_{50} values were in the range 7 – 39 days (values from 6 different soils). The acceptable normalised DT_{50} values calculated with the appropriate normalisation method as recommended by FOCUS were provided during the meeting for all the metabolites. The agreed values are included in the list of endpoints, whereas the EFSA noted that in the final addendum to the DAR provided by the rapporteur Member State (July 2008), the incorrect values are still reported.

In addition, it was agreed that the use of the mean value of the $DT_{50}s$ derived from the same soil tested with different application rates and different labelling positions should be considered in the assessment. The normalised $DT_{50}s$ for quizalofop were 7 – 46 days (geometric mean from 6 soils is 16.7 days). From the amalgamated list of endpoints, the DT_{50} values for quizalofop with studies conducted at 10 – 22°C ranged from 7 to 182 days (20 soils). After normalisation to FOCUS reference conditions this range of single first-order (SFO) DT_{50} values was essentially unchanged (7 – 181.5 days). The experts agreed that the median DT_{50} value of quizalofop that is appropriate for use in FOCUS modelling is 24.3 days.

The rates of degradation of metabolites hydroxy-quizalofop and dihydroxy-quinoxaline were determined in one of the studies discussed above where propaquizafop was applied as the test substance (3 soils). DT_{50} values were in the range of 12 - 21 days for hydroxy-quizalofop and 54 - 63 days for dihydroxy-quinoxaline.

From the amalgamated list of end points, the DT_{50} values for hydroxy-quizalofop with studies conducted at 10 – 20°C ranged from 7 to 69.4 days (14 soils). After normalisation to FOCUS reference conditions this range of SFO DT_{50} is 10.7 – 53.3 days. The experts agreed that the median DT_{50} value of hydroxy-quizalofop that is appropriate for use in FOCUS modelling is 15.6 days.

For metabolite dihydroxy-quinoxaline when the amalgamated list of endpoints is considered the DT_{50} values ranged from 42 to 258 days (10 soils). After normalisation to FOCUS reference conditions this range of SFO DT_{50} values is 36 – 200 days. In conclusion, it was agreed that the DT_{50} value of hydroxy-quizalofop that is appropriate for FOCUS modelling is the median of 54.3 days.

The aerobic degradation of hydroxy-quinoxaline was determined in three soils at 20°C. The calculated DT_{50} values (46 – 71 days) when normalised to pF 2.0 are in the range 46 – 65 days (geometric mean that is appropriate for use in FOCUS modelling is 56 days).

Although not required, a number of field dissipation studies using EC formulations of propaquizafop were conducted in Switzerland and Germany. The soils used ranged from a sandy clay loam to a sandy loam (OC 1.5 - 4.2%, pH 5.8 - 8.0). Propaquizafop was applied to oilseed rape at a rate of 0.2 kg a.s./ha at one site in Switzerland (Vouvry) and to bare soil at a rate of 0.4 - 0.5 kg a.s./ha at the remaining sites. At the majority of sites, residues of propaquizafop and its metabolites, quizalofop and quizalofop-phenol were considered together and expressed as propaquizafop equivalents. The experts from the Member States agreed with the rapporteur Member State that the residue data expressed as propaquizafop equivalents are not appropriate to derive $DT_{50 \text{ field}}$ values to be considered for the environmental risk assessment.

Only soil samples from the Vouvry site were analysed for residues of quizalofop. For this metabolite the DT_{50} and DT_{90} values, calculated according to Timme and Frehse best-fit calculations, of 31 and 103 days respectively, were obtained. Reliable field DT_{50} values for metabolites quizalofop and hydroxy-quizalofop were derived from one study presented in the DAR of quizalofop-P-ethyl. The valid SFO $DT_{50 \text{ field}}$ values agreed by the experts were in the range 33.6 – 39.8 days for quizalofop (1 site in Germany, 1 site in France and 1 site in Spain) and 32.2 days (1 site in Germany) for hydroxy-quizalofop.

The predicted environmental concentrations in soil (PEC_{soil}) for propaquizafop were calculated based on standard equations recommended by FOCUS modelling work group. For propaquizafop the longest normalised DT_{50} value from laboratory studies of 2.1 days (SQRT 1.5th order kinetics) was derived from the longest DT_{50} value (1.8 d) of one of the replicates from the same soil with different application rate/radiolabel position. For PEC_{soil} calculations for metabolite quizalofop, the worst-case normalised DT_{50} value from laboratory studies of 45.3 days was used. The following worst-case not normalised laboratory DT_{50} values were used as input values for the metabolites: 21 days for hydroxyquizalofop, 63 days for dihydroxy-quinoxaline and 71 days for hydroxy-quinoxaline. For the three

metabolites quizalofop, hydroxy-quizalofop and dihydroxy-quinoxaline, the appropriate DT_{50} values to be used in PEC_{soil} calculations were discussed at the meeting PRAPeR 52 on the basis of the amalgamated list of endpoints. It was agreed in PRAPeR 52 that the longest normalised soil DT_{50} value from the laboratory studies should be used: 182 days for quizalofop, 53.3 days for hydroxyquizalofop and 200 days for dihydroxy-quinoxaline. As the TER values were based on the corresponding initial PEC_{soil} values, the experts concluded that the available PEC_{soil} values for quizalofop, hydroxy-quizalofop and dihydroxy-quinoxaline at the later time points should not be considered in the risk assessment. For metabolite hydroxy-quinoxaline as a worse case DT_{50} value was used in the calculations, PEC_{soil} values at the later time points can be considered valid.

4.1.3. MOBILITY IN SOIL OF THE ACTIVE SUBSTANCE AND THEIR METABOLITES, DEGRADATION OR REACTION PRODUCTS

As propaquizatop is highly unstable in soil, its adsorption and desorption characteristics could not be determined. An adsorption Koc of 2220 mL/g has been estimated for modelling purposes, based on the *n*-octanol/water partition coefficient Log K_{ow} .

The sorption of quizalofop was investigated in four soils. $K_f oc$ values were 347 - 472 mL/g, with 1/n values of 0.82 - 0.88. Taking into consideration the reliable adsorption coefficients for quizalofop reported in the quizalofop-P-tefuryl (7 soils) and quizalofop-P-ethyl (8 soils) DARs, the agreed $K_f oc$ median value for quizalofop is 356 mL/g and the median 1/n is 0.8. Quizalofop is therefore classified as exhibiting low to high mobility in soil. There was no evidence of a correlation of adsorption with pH.

The sorption of metabolites quizalofop-phenol, hydroxy-quizalofop and dihydroxy-quinoxaline was directly measured in three soils using the batch equilibrium sorption technique. The following adsorption K_f values were obtained: 2433 – 7741 mL/g (1/n values 0.83 - 1.12) for quizalofop-phenol; 74 – 141 mL/g (1/n values of 0.94 - 1.07) for hydroxy-quizalofop; 371 – 609 mL/g (1/n values of 0.59 - 0.66) for dihydroxy-quinoxaline. Satisfactory batch adsorption experiments reported in the quizalofop-P-tefuryl DAR (3 soils) and in the quizalofop-P-ethyl DAR (3 soils) were also considered by PRAPeR 52 to derive the appropriate endpoint for metabolites hydroxy-quizalofop and dihydroxy-quinoxaline. On the basis of the results obtained, hydroxy-quizalofop is classified as having low to high mobility in soil (K_f oc or Koc 74.4 – 1567 mL/g; 1/n 0.8 - 1.07). There was no evidence of a correlation of adsorption with pH. The experts agreed that the median K_f oc value of 141.1 mL/g (median 1/n 1.0) is appropriate for FOCUS modelling. Taking into consideration the amalgamated list of endpoints, dihydroxy-quinoxaline is classified as having low to very high mobility in soil (K_f oc r Koc 48 – 1468 mL/g; 1/n 0.59 - 1.0). There was no evidence of a correlation of adsorption with pH. The experts agreed that the median K_f oc value of 140.1 mL/g (median 1/n 0.7) is appropriate for FOCUS modelling.

In the groundwater exposure assessment reported in the DAR, the adsorption properties of hydroxyquinoxaline was estimated using the software programme PCKOCWIN (Koc = 522.4 mL/g). The experts from the Member States considered this value acceptable.

The mobility of propaquizatop was assessed in two column leaching studies. In the first study, four typical agricultural soils with a range of characteristics (pH 5.5 - 8.0, organic matter 0.6 - 1.5%, texture: clay loam – sandy loam) were used. In the second study, three German standard soils (pH 6.0 - 6.6, organic carbon 0.5 - 2.6%, texture: sand – sandy loam) were used. In the former study, after application of ca. 50 cm simulated rainfall over a 7 day period, the vast majority of radioactivity was retained within the upper 0 - 15 cm of the sandy loam, clay loam and loamy sand soil columns (85 - 98%). In the silt loam soil column, the distribution of applied radioactivity, by comparison, was slightly more uniform, with 49% of the applied radioactivity retained in the upper 0 - 15 cm. In the second study, the percentage of applied radioactivity in the soil was not determined. The hydrolysis product quizalofop was the major degradation product identified in the soil (max. 59% of total extracted radioactivity in the sample at 10 - 15 cm depth). Further degradation of quizalofop by hydrolysis to quizalofop-phenol (max. 15.9% of total extracted radioactivity in the sample at 15 - 20 cm depth) and hydroxylation to hydroxy-quizalofop (max. 55.5% of total extracted radioactivity in the sample at 5 - 10 cm depth) also took place. In both the studies the amount of radioactivity detected in the column leachates at the end of leaching was very low (0.034 - 4.07% AR).

Two aged column leaching studies, with aerobically aged propaquizafop, were conducted using treated BBA 2.1 standard sand (aged for 76 days), Dielsdorf sandy loam soil (aged for 31 days) and Steinmaur loam soil (aged for 30 days). The principal degradation products of propaquizafop, quizalofop (max. 52.9%) and hydroxy-quizalofop (max. 19.3%), along with quizalofop-phenol (max. 5.5%) occurred in the aged residue soil samples. Trace amounts of hydroxy-quizalofop-phenol (max. 0.6%) were also detected in the upper sections of the soil columns (0 - 6 cm depth) after leaching. After application of 20 - 51 cm simulated rainfall, the vast majority of radioactivity was retained in the upper sections of the soil columns (0 - 12 cm depth) and the column leachates contained only 0.1 - 0.4% AR.

4.2. FATE AND BEHAVIOUR IN WATER

4.2.1. SURFACE WATER AND SEDIMENT

The rate of hydrolysis of propaquizafop is pH dependent, increasing under alkaline conditions. Halflives of 10.5 days, 32 days and 12.9 hours at pH 5, 7 and 9 respectively, were measured. A hydrolysis study for the main hydrolysis products of propaquizafop was not considered necessary since the results of the laboratory water-sediment dissipation study are more representative of the aquatic environment. The formation of the hydroxylamine derivative occurred only at pH 5.0.

In a photolysis study using artificial irradiation, no difference between light and dark conditions was observed in the degradation of propaquizafop. Several degradation products were observed, including quizalofop (max. 16.4% AR after 11 days) and quizalofop-phenol (max. 36% AR after 11 days). Further information on the radiation intensity of the xenon lamp used in the study was submitted by the notifier and discussed at the meeting of experts. It was agreed that the information provided on the aqueous photolysis study was inadequate for the calculation of reliable photolytic half-lives. Therefore, a data gap was identified. Results from two separate studies on phototransformation of propaquizafop and quizalofop in water by direct irradiation were available. The measured quantum yield of photolysis was 1.11×10^{-5} and 1.15×10^{-5} for propaquizafop and quizalofop respectively. Annual average DT_{50} values were calculated at latitude of 50°N, giving 32 and 26 days for propaquizafop and quizalofop respectively.

Based on the results obtained in a biodegradation test (OECD 301B), propaquizafop is not a readily biodegradable substance.

Relevant information on the fate of propaguizafop was obtained from a sediment/water study in two systems. In this study propaquizafop was rapidly hydrolysed to quizalofop, which was initially predominantly detected in the water phase (84.6 - 90.2% AR, day 1 - 2) and then gradually partitioned into sediment up to levels of 40.5 - 45.4% AR after 14 - 28 days. Quizalofop was degraded in the water phase to yield a number of metabolites including hydroxy-quizalofop, dihydroxy-quinoxaline, hydroxy-quinoxaline, quizalofop-phenol and hydroxy-quizalofop-phenol, none of which exceeded 4.1% AR. Further degradation of quizalofop in the sediment phase yielded the metabolites dihydroxy-quinoxaline and hydroxy-quizalofop, which reached maxima of 10% AR and 11.2% AR respectively. Several other metabolites were detected in the sediments, including hydroxy-quinoxaline (max. 6.4% AR), quizalofop-phenol (max. 5.2% AR) and hydroxy-quizalofopphenol (max. 7.1% AR). Terminal products were carbon dioxide (max. 38% AR) and bound residues in the sediment (max. 46%). The rate of degradation (DT_{50 system}, DT_{50 water}, DT_{50 sed}) for propaquizafop and its metabolites were provided in the "Predicted environmental concentrations in surface water" (PEC) section of the DAR. Surface water modelling was conducted using the FOCUS surface water models and scenarios. The simulations were based on application of the product 'Agil 100 EC' (100 g/L EC formulation) to sugar beet and spring and winter oilseed rape in Northern and Southern Europe at a maximum single application of 0.2 kg a.s./ha, in accordance with the proposed EU GAP. The peer review considered the information provided on the kinetic modelling of data from the water/sediment study inadequate. Thorough descriptions of the kinetic analysis of the total system as well as of the water/sediment compartments were provided by the notifier but were not available for the experts of PRAPeR 52. Therefore, all the DT₅₀ values derived from the water/sediment study are not peer reviewed and should not be used for risk assessment. As a consequence, all the PEC_{sw} and PEC_{sed} values at the later time points are considered not reliable. Nevertheless, initial PEC_{sw} and PEC_{sed} at Step 1 for hydroxy-quizalofop, dihydroxy-quinoxaline and hydroxy-quinoxaline and up to Step 3 for propaquizatop and quizalofop were used with the appropriate toxicity endpoints for the

calculation of the TERs. The required information on the conceptual compartments model utilised by the Model Maker application was provided in the final addendum (July 2008). Although the data ($DT_{50, system}$ for propaquizafop, quizalofop, hydroxy-quizalofop, dihydroxy-quinoxaline, hydroxy-quinoxaline, quizalofop-phenol and hydroxy-quizalofop-phenol; $DT_{50, water}$ and $DT_{50, sediment}$ for propaquizafop and quizalofop) are not peer reviewed, the EFSA considered the assessment acceptable.

4.2.2. POTENTIAL FOR GROUND WATER CONTAMINATION OF THE ACTIVE SUBSTANCE THEIR METABOLITES, DEGRADATION OR REACTION PRODUCTS

Simulations of the leaching behaviour of propaquizafop and its soil metabolites quizalofop, hydroxyquizalofop, dihydroxy-quinoxaline and hydroxy-quinoxaline were conducted using the FOCUS PELMO model version 3.3.2. The simulations were based on a single maximum application of 0.2 kg a.s./ha to sugar beet and spring and winter oilseed rape in accordance with the proposed EU GAP, using the relevant FOCUS groundwater scenarios. The approach used to model metabolites as applied substances was considered inappropriate by the experts. However, based on the available PEC_{gw} results for these metabolites, it was agreed that it is unlikely that the assessment would change if the simulations were to take into consideration the formation of the metabolites in deeper soil layers.

The selection of the input parameters for the metabolites quizalofop, dihydroxy-quinoxaline and hydroxy-quizalofop was discussed at the meeting of experts PRAPeR 52. According to the amalgamated list of endpoints the normalised (20°C and pF 2) soil DT₅₀ values to be used for modelling purposes are: 24.3 days for quizalofop (median of 20 values), 54.3 days for dihydroxy-quinoxaline (median of 10 values) and 15.6 days for hydroxy-quizalofop (median of 14 values). In addition, the agreed K_{oc} values are: 356 mL/g for quizalofop (median of 19 values), 548 mL/g for dihydroxy-quinoxaline (median of 9 values) and 141 mL/g for hydroxy-quizalofop (median of 9 values). Although the input parameters used in the available modelling were slightly different from these agreed values, the experts concluded that the modelling presented by the notifier was acceptable and no recalculations of PEC_{gw} are needed. The predicted 80th percentile annual average concentrations of propaquizafop and its metabolites were <0.01 µg/L in groundwater at 1 m depth for all scenarios and crop types simulated.

4.3. FATE AND BEHAVIOUR IN AIR

The vapour pressure of propaquizatop is low $(4.4 \times 10^{-10} \text{ Pa at } 25^{\circ}\text{C})$. In a volatility study from plant surfaces, no significant volatilisation of propaquizatop sprayed under controlled climatic conditions was found within 24 hours of application. Modelling calculations with PELMO covering the range of intended uses, indicated that propaquizatop has a very low potential to volatilise from topsoil. It can therefore be concluded that the tendency of propaquizatop to partition into air from other environmental compartments is low and exposure to air is expected to be negligible.

Rate constants of the reaction of propaquizafop and its principal metabolite quizalofop with hydroxyl radicals $(1.5 \times 10^6 \text{ radicals cm}^{-3})$ were estimated using the Atkinson procedure, resulting in DT₅₀ values of 0.6 days and 0.7 days for propaquizafop and quizalofop respectively. Therefore the low amounts of propaquizafop, which may enter the atmosphere, would be unlikely to be subject to long-range atmospheric transport.

5. Ecotoxicology

Propaquizafop was discussed in the meeting of ecotoxicology experts PRAPeR 53 (subgroup 1) in July 2008 on the basis of the DAR (July 2005), the addenda of August 2006 and July 2008 and the corrigendum of July 2008. Propaquizafop is the active substance in the herbicide 'Agil 100 EC' (100 g/L). The representative field uses were in sugar beet (1 x 200 g a.s./ha) and oilseed rape (1 x 200 g a.s./ha).

Quizalofop-P-tefuryl, quizalofop-P-ethyl and propaquizafop are ester variants of the active substance quizalofop-P. These three ester variants have different toxicities based on their lipophilic properties (bioavailability). Aquatic and terrestrial toxic endpoints for the common metabolites of propaquizafop, quizalofop-P-ethyl and quizalofop-P-tefuryl were assessed by Member State experts at PRAPeR 53. Where more than one study was available for the same metabolite in the three dossiers, the lower valid endpoint was agreed to be used in all relevant risk assessments. The agreed endpoints were made available to Member States electronically via the CIRCA website.

The risk assessment was conducted according to the following guidance documents: Risk Assessment for Birds and Mammals, SANCO/4145/2000, September 2002; Aquatic Ecotoxicology, SANCO/3268/2001 rev.4 final, October 2002; Terrestrial Ecotoxicology, SANCO/10329/2002 rev.2 final, October 2002; Risk Assessment for non-target arthropods, ESCORT 2, March 2000, SETAC.

In view of the restrictions concerning the acceptance of new (i.e. newly submitted) studies after the submission of the DAR to EFSA, as laid down in Commission Regulation (EC) No. 1095/2007, the new studies on algae and higher aquatic plants could not be considered in the peer review.

5.1. **RISK TO TERRESTRIAL VERTEBRATES**

The acute and short-term LD_{50} values for birds were >2000 mg a.s./kg bw and 827 mg a.s./kg bw/d. Member State experts agreed to use the reproductive NOEC of 20.2 mg/kg bw/day for bobwhite quail (*Colinus virginianus*) for the long-term risk assessment. In the first tier risk assessment the acute and short-term TERs for herbivorous and insectivorous birds were above the Annex VI triggers of 10. The long-term TER value for herbivorous birds was also above the Annex VI trigger of 5, but further refinements were required to address the long-term risk to insectivorous birds. More justification was required during the peer review to accept the proportion of diet obtained in the treated area (PT)

refinements presented in the DAR. The experts suggested to refine the long-term risk assessment based on the yellow wagtail (*Motacilla flava*) as focal species and a mixed diet of 11% small and 89% large arthropods (by wet weight). The rapporteur Member State provided a refined risk assessment in an addendum after the expert meeting (Addendum, July 2008). A TER value of 14.8 was calculated using wet weight based proportion of different food types (PD) refinements, indicating a low long-term risk to insectivorous birds from the intended uses.

The lowest acute endpoint for mammals was observed in a test with mouse ($LD_{50} = 3009$ mg a.s./kg bw), indicating a low acute toxicity to mammals. A NOAEL of 15 mg a.s./kg bw/d, derived from a two-generation rat study, was used for the long-term risk assessment. The first tier acute and long-term TERs were above the Annex VI trigger for mammals, indicating a low risk from the intended uses.

A log P_{ow} of 4.78 for propaquizatop triggered a risk assessment for secondary poisoning of fish- and earthworm-eating birds and mammals. TER calculations for earthworm-eating birds and mammals were corrected in the addendum from July 2008, based on correct PEC_{soil} values. All TERs for secondary poisoning were above the Annex VI trigger, indicating a low risk from all intended uses. The potential for bio-accumulation and food chain behaviour of the metabolites not assessed in the DAR nor commented during the peer review. The EFSA notes however, that such an assessment was provided in the DAR for quizalofop-P-ethyl. A log P_{ow} of 2.22 for the main metabolite (quizalofop) suggested little potential for bioaccumulation. Following structure-activity relationship considerations and metabolism studies in rat, laying hen and lactating goat no bioaccumulation was expected for hydroxy-quizalofop or dihydroxy-quinoxaline.

The acute risk from consumption of contaminated drinking water from puddles or reservoirs held in the axils of leaves was assessed following the existing guidance document (SANCO 4145/2000). TERs were above the Annex VI trigger of 10 for both birds and mammals.

The risk from plant metabolites to herbivorous birds and mammals was not addressed in the DAR nor commented during the peer review. The EFSA notes however, that such an assessment was provided in the DAR for quizalofop-P-ethyl. There it was noted that the main metabolite was quizalofop, for which the ecotoxicology testing indicated comparable or lower toxicity compared to quizalofop-P-ethyl. Moreover, the low risk posed by quizalofop-P-ethyl to avian species could be extrapolated to quizalofop. Furthermore, the available data confirmed that metabolism in the rat and hen was comparable. Therefore the toxicity of the quizalofop was considered to be assessed as an integral aspect of the studies conducted with the quizalofop-P-ethyl. In conclusion toxicity tests with quizalofop in avian species were considered unnecessary. The EFSA consider this assessment to address the concerns also for propaquizafop.

5.2. **RISK TO AQUATIC ORGANISMS**

The lowest endpoints for technical propaquizafop was observed for fish with an acute $LC_{50, 96h}$ of 0.19 mg a.s./L and a chronic NOEC_{21d} of 0.019 mg a.s./L. The acute toxicity of the formulation ($LC_{50} = 0.11$ mg a.s./L) was comparable to the toxicity of propaquizafop, based on active substance content. The rapporteur Member State proposed to classify propaquizafop as very toxic to aquatic organisms (R50). Only one algae study was considered valid in the DAR. A second algae study was subsequently submitted to the rapporteur Member State by the notifier, and assessed in the addendum of August 2006. The new study was not considered in the peer review in view of the restrictions concerning the acceptance of new (i.e. newly submitted) studies after the submission of the DAR to EFSA, as laid down in Commission Regulation (EC) No. 1095/2007. The rapporteur Member State requested an additional formulation study with *Lemna gibba*, as the formulation toxicity was found to be 14 times higher for algae (*Pseudokirchneriella subcapitata*) compared to the toxicity from the technical substance on its own. A formulation study was subsequently submitted to the rapporteur Member State by the notifier and assessed in the addendum from August 2006. The new study was not considered in the addendum from August 2006. The new study was not considered in the addendum to the toxicity from the technical substance on its own. A formulation study was subsequently submitted to the rapporteur Member State by the notifier and assessed in the addendum from August 2006. The new study was not considered in the peer review in view of the rapporteur Member State by the notifier and assessed in the addendum from August 2006. The new study was not considered in the peer review in view of the restrictions laid down in Commission Regulation (EC) No. 1095/2007. No studies were required for sediment dwellers.

On the basis of available toxicity data and FOCUS Step 1 and 2 exposure values, TERs above the Annex VI trigger were derived for the acute and chronic risk to invertebrates, algae and *Lemna* for all intended uses. Further refinements were required to address the acute and chronic risk to fish. At FOCUS Step 3, acute TERs were above the Annex VI trigger for all scenarios for use in sugar beet. The TER trigger was respected in the D4, D5 and R1 scenarios but not in the D1 and D3 scenarios for use in spring oilseed rape. In winter oilseed rape the TER trigger was respected in the D4 and R1 scenarios but not in the D2, D3, D5 and R3 scenarios. Chronic TERs for fish were above the Annex VI trigger for all scenarios, based on FOCUS Step 3 values for all intended uses. It was not possible to draw a final conclusion on the risk to aquatic organisms until the additional plant studies had been included in the assessment. In case of Annex I inclusion the preliminary conclusion indicates however, that further refinements of the acute risk assessment for fish would be required for Member States having geo-climatic conditions represented by the FOCUS water body scenarios which failed to meet the Annex VI trigger for the spring and winter use in oilseed rape.

Aquatic toxicity data were available for the metabolites quizalofop, hydroxy-quizalofop, dihydroxyquinoxaline, hydroxy-quinoxaline and quizalofop-phenol. The lower toxicity endpoint for each metabolite was used, as agreed in the meeting of experts (see above in section 5). All toxicity data indicated that the toxicity of these metabolites to aquatic organisms is lower than the active substance, except for quizalofop which was a factor of 15 more toxic to higher plants. The higher toxicity of the metabolite quizalofop compared to the active substance propaquizafop may be attributed to the fact that quizalofop is the substance expected to cause the herbicidal effect. It may however, also in part result from the different higher plants tested. *Lemna gibba* was used in the toxicity test with

propaquizafop, whereas the non-standard test species *Glyceria fluitans* was used in the study with quizalofop.

Surface water modelling was available for the four major metabolites quizalofop, hydroxyquizalofop, dihydroxy-quizalofop and hydroxy-quinoxaline. The risk assessment resulted in TERs above the Annex VI trigger for all metabolites for all intended uses except for quizalofop, based on FOCUS Step 1 exposure data. A further refined risk assessment at FOCUS Step 3 provided TERs above the Annex VI trigger for all scenarios and all indented uses. No risk assessment was provided on basis of the toxicity data available for quizalofop-phenol, as this was considered a minor metabolite in the aquatic environment (see section 4.2).

The risk to sediment dwellers from the four major metabolites which may partition to sediment was considered to be low in the DAR. It was pointed out that the acute toxicity of the four metabolites was lower than that of the parent compound (>10-fold difference) for fish, Daphnia and algae. Acute TER values, based on Daphnia toxicity data for quizalofop, hydroxy-quizalofop, dihydroxy-quinoxaline, and hydroxy-quinoxaline and the maximum concentrations expected in the sediment were several orders above the Annex VI trigger, indicating a negligible level of acute risk also for sedimentdwelling organisms. The available DT_{50} values for the metabolites in sediment (from 41 to 80 d) indicate that they could persist long enough to be of concern for chronic toxicity; nevertheless due to the low acute toxicity to Daphnia, it was considered in the DAR that the chronic risk was low. This assessment was never challenged during the peer review. The EFSA did however provide a risk assessment for quizalofop and dihydroxy-quinoxaline when writing the conclusion; based on worst case FOCUS Step 2 PECsw values for quizalofop and FOCUS Step 1 PECsed for dihydroxyquinoxaline. Toxicity endpoints for Chironomous riparius for quizalofop (water-spiked study) and dihydroxy-quinoxaline (sediment-spiked study) are available from the quizalofop-P-ethyl and quizalofop-P-tefuryl DARs (see above in section 5). TERs were several orders of magnitude above the Annex VI trigger, supporting the conclusion that a low risk from the major metabolites was expected for sediment dwellers.

A bio-concentration study was provided (log $P_{ow} = 4.78$) and assessed as valid by the rapporteur Member State. The risk of bioaccumulation in aquatic food chains was assessed as low, based on a BCF of 583 (whole fish) and an elimination half-life of 2.6 h (whole fish).

It was not possible to finalise the risk assessment to aquatic organisms before the missing studies on aquatic plants had been included in the assessment. Based on the data available, it was possible to identify a low risk for all scenarios from uses in sugar beet. Risk assessment for uses in oilseed rape (spring and winter) also indicated a low risk for some scenarios. However further refinements of the acute risk assessment for fish would be required for Member States having geo-climatic conditions represented by the FOCUS water body scenarios which failed to meet the Annex VI trigger for the

spring and winter use in oilseed rape. The risk for all metabolites was addressed, indicating a low risk for all intended uses. The risk from bioaccumulation in fish was assessed as low.

5.3. **RISK TO BEES**

Hazard quotients calculated for both oral and contact exposure for formulated propaquizafop (which was slightly more toxic than the technical substance) were well below the trigger of 50, indicating a low risk to bees from the intended uses. The results from the semi-field cage tests, in which foraging bees were exposed to treatments applied to a crop in full flower, confirm this low risk. Overall, it was concluded that the intended uses of 'Agil 100 EC' would pose a low risk to honey bees.

5.4. **RISK TO OTHER ARTHROPOD SPECIES**

The hazard quotients for Typhlodromus pyri (HQs <2) indicate a low risk to arthropods for in-field and off-field environments. For Aphidius rhopalosiphi, there was 100% mortality on glass plate at an application rate of 150 g a.s./ha (lower than the GAP use of 200 g a.s./ha). Extended laboratory studies were provided for both A. rhopalosiphi and T. pyri. There were no significant effects on survival or reproduction with T. pyri. There were no effects on survival with A. rhopalosiphi, whereas there were effects above the trigger value of 50% (66%) on reproduction at the field rate (<50% effect at 1 m drift rate). In the DAR these effects were considered to be short lived as they were seen on fresh residues and propaquizatop foliar residues were expected to decline rapidly. The higher tier risk assessment was discussed in the meeting of Member State experts. The experts concluded that the notifier should further address the in-field risk to A. rhopalosiphi, either by an estimation of the foliage half-life of propaguizatop based on measured residues or by providing an aged residue study with A. rhopalosiphi. Following the recommendations of ESCORT 2, laboratory studies were provided for Chrysoperla carnea, Coccinella septempunctata and Aleochara bilineata, together with a study on *Poecilus cupreus* (ESCORT 1 recommended species). The studies on these additional species all indicate effects on survival or reproduction of less than the ESCORT 2 trigger of 50% at the recommended field rate, indicating a low risk to these additional species. However, a final conclusion on the risk to non-target arthropods was pending further studies to fully address the infield risk to A. rhopalosiphi.

5.5. **RISK TO EARTHWORMS**

The lowest acute and chronic toxicity endpoints for the metabolites common to propaquizafop, quizalofop-P-ethyl and quizalofop-P-tefuryl were used in the earthworm risk assessment, as agreed during the meeting of experts (see above in section 5). The risk assessment was only updated in appendix 1. Propaquizafop and the soil metabolites quizalofop, dihydroxy-quinoxaline and hydroxy-quizalofop were of low acute toxicity to earthworms (LC50_{14d} from 948 to >1000 mg a.s./kg soil). The representative formulation was more acutely toxic to earthworms (LC50_{14d} = 54.6 mg a.s./kg soil). The acute TERs based on maximum initial PEC_{soil} values and toxicity correction (log P_{ow} >2) were several orders of magnitude above the Annex VI trigger of 10. Chronic toxicity data were

provided for the formulation and the soil metabolite quizalofop. TERs above the Annex VI trigger indicated a low chronic risk to earthworms. In conclusion a low risk to earthworms was expected from all intended uses.

5.6. RISK TO OTHER SOIL NON-TARGET MACRO-ORGANISMS

Propaquizafop rapidly degrades in soil but the main metabolite quizalofop has a $DT_{90 \text{ field}} = 103 \text{ days}$ and field dissipation studies for the sum of propaquizafop and metabolites residues indicated $DT_{90 \text{ field}}$ values in the range of 215 to 392 days. Consequently, a laboratory study with collembola (*Folsomia candida*) was conducted to address the effects on other soil non-target macro-organisms. A TER was derived for propaquizafop, based on the 28-day NOEC (divided by 2) and the worst case initial soil PEC value. In addition, a risk assessment was performed for the metabolites quizalofop, hydroxyquizalofop, dihydroxy-quinoxaline, and hydroxy-quinoxaline, assuming toxicities ten times higher than that of propaquizafop. All of the TER values were greater than the trigger of 5, indicating a low risk to soil macro-organisms.

5.7. RISK TO SOIL NON-TARGET MICRO-ORGANISMS

No effects of >25 % on soil respiration and nitrification were observed in tests with propaquizafop up to a concentration of 1500 mg a.s./kg soil dw. Quizalofop and the other metabolites were likely to have been formed in the test systems and hence were also addressed. Since no effects were observed at a concentration significantly above the calculated maximum PEC_{soil} it was concluded that the risk to soil non-target micro-organisms was low for the representative uses evaluated.

5.8. RISK TO OTHER NON-TARGET ORGANISMS (FLORA AND FAUNA)

Second tier laboratory assays were provided for the four dicotyledonous species *Brassica napus* (oilseed rape), *Daucus carota* (carrot), *Lactuca sativa* (lettuce), *Pisum sativum* (pea), in addition two monocotyledonous species *Allium cepa* (onion) and *Avena sativa* (oat). Oat was distinctly more sensitive than any of the other plant species ($EC_{50 \text{ vegetative vigour}} = 26 \text{ g a.s./ha}$). TER values, calculated from EC_{50} values, from seedling emergence tests with pre-emergent application were all above the Annex VI trigger of 5 based on PEC values form spray drift at 1 m distance. All TER values, based on EC_{50} values from vegetative vigour endpoint for oats (TER = 4.8). It was agreed during the meeting of Member State experts that a refined risk assessment should be provided, based on an in-field no-spray buffer zone of 5 m. The rapporteur Member State provided the refined risk assesses to be low if appropriate mitigation measures were provided, e.g. in-field no-spray buffer zone of 5 m.

5.9. RISK TO BIOLOGICAL METHODS OF SEWAGE TREATMENT

Propaquizafop up to a concentration of 100 mg a.s./L (the highest concentration tested) did not adversely affect the biodegradation activity of sewage micro-organisms. It was not expected that the

concentrations of propaquizafop in biological sewage treatment plants would reach a concentration of more than 100 mg a.s./L if the product were to be applied according to the GAP and therefore the risk to biological methods of sewage treatment was considered to be low.

6. **Residue definitions**

Soil	
Definition for risk assessment:	propaquizafop; quizalofop; hydroxy-quizalofop; dihydroxy- quinoxaline
Definition for monitoring:	propaquizafop
Water	
Ground water	
Definition for exposure assessment:	propaquizafop; quizalofop; hydroxy-quizalofop; dihydroxy- quinoxaline; quizalofop-phenol; hydroxy-quinoxaline
Definition for monitoring:	propaquizafop
Surface water	
Definition for risk assessment:	propaquizafop; quizalofop; from soil runoff/drainage: hydroxy-quizalofop, dihydroxy-quinoxaline
Definition for monitoring:	quizalofop (as the $DT_{90water/sed}$ value for propaquizafop is less than 3 days, this metabolite is indicated as a good indicator for monitoring purposes)
Air	
Definition for risk assessment:	propaquizafop
Definition for monitoring:	propaquizafop
Food of plant origin	
Definition for risk assessment:	Sum of propaquizafop and quizalofop, expressed as quizalofop (sum of isomers)
Definition for monitoring:	Sum of propaquizafop and quizalofop, expressed as quizalofop (sum of isomers)
Food of animal origin	
Definition for risk assessment:	not necessary
Definition for monitoring:	not necessary

Overview of the risk assessment of compounds listed in residue definitions for the environmental compartments **Soil**

Compound (name and/or code)	Persistence	Ecotoxicology				
Propaquizafop	Very low persistence Laboratory $DT_{50} < 3 d$; $DT_{90} < 3 - 56 days$ (best-fit linear regression analysis) $(20 - 22^{\circ}C, 40 - 60\%$ MWHC soil moisture)	The risk to earthworms, soil non-target macro and micro-organis was assessed as low.				
Quizalofop	Low to high persistence Single first-order labDT ₅₀ 7 – 182 days (20 – 22°C, different soil moisture conditions in the range 40 – 55% MWHC)	The risk to earthworms and soil non-target macro-organisms was assessed as low.				
Hydroxy-quizalofop	Low to medium persistence Single first-order labDT ₅₀ 7 – 69.4 days (20°C, different soil moisture conditions in the range 40 – 49% MWHC)	The risk to earthworms and soil non-target macro-organisms was assessed as low.				
Dihydroxy-quinoxalineModerate to high persistenceSingle first-order labDT50 42 - 258 days (20°C, different soil moistur conditions in the range 40 - 70% MWHC)		The risk to earthworms, soil non-target macro and micro-organisms was assessed as low.				
Hydroxy-quinoxaline*	Moderate to medium persistence Single first-order labDT ₅₀ 46 – 71 days (20°C, 40% MWHC soil moisture)	The risk to earthworms and soil non-target macro-organisms was assessed as low.				

* Minor non-transient soil metabolite (maximum 8.8% AR)

Ground water

Compound (name and/or code)	Mobility in soil	>0.1 μg/L 1m depth for the representative uses (at least one FOCUS scenario or relevant lysimeter)	Pesticidal activity	Toxicological relevance	Ecotoxicological activity		
Propaquizafop	Adsorption properties cannot be determined $(K_{oc} = 2220 \text{ mL/g})$ based on log K_{ow}	No	Yes	Yes	Yes		
Quizalofop	Low to high mobility K _{foc} 133 – 1791 mL/g	No	Yes	Rat metabolite; higher toxicity than the parent not expected. No further data needed.	Yes		
Hydroxy-quizalofop	Low to high mobility K _{oc} /K _{foc} 74 – 1567 mL/g	No	No	Rat metabolite; higher toxicity than the parent not expected. No further data needed.	No		
Dihydroxy-quinoxaline	Low to very high mobility K _{oc} /K _{foc} 48 – 1468 mL/g	No	No	Rat metabolite; higher toxicity than the parent not expected. No further data needed.	No		

Compound (name and/or code)	Mobility in soil	>0.1 μg/L 1m depth for the representative uses (at least one FOCUS scenario or relevant lysimeter)	Pesticidal activity	Toxicological relevance	Ecotoxicological activity	
Hydroxy-quinoxaline	Low mobility K _{oc} 522.4 mL/g (estimated using the software programme PCKOCWIN)	No	No	Rat metabolite; higher toxicity than the parent not expected. No further data needed.	No	
Quizalofop-phenol (minor non transient metabolite in soil)	Slight mobility to immobile K _{foc} 2433 – 7741 mL/g	Based on the adsorption properties, no $PEC_{gw} > 0.1 \ \mu g/L \ 1 \ m \ depth \ for$ the representative uses is expected (agreed in PRAPeR 52)	No	Rat metabolite; higher toxicity than the parent not expected. No further data needed.	No	

Surface water and sediment

Compound (name and/or code)	Ecotoxicology
Propaquizafop	Very toxic to aquatic organisms. The risk to aquatic organisms was assessed as low.
Quizalofop (water and sediment)	Harmful to aquatic organisms. The risk to aquatic organisms was assessed as low.
Hydroxy-quizalofop (only sediment)	Not toxic to aquatic organisms. The risk to aquatic organisms was assessed as low.
Dihydroxy-quinoxaline (only sediment)	Harmful to aquatic organisms. The risk to aquatic organisms was assessed as low.
Hydroxy-quinoxaline*	Harmful to aquatic organisms. The risk to aquatic organisms was assessed as low.

* Minor soil metabolite (maximum 8.8%)

Air

Compound (name and/or code)	Toxicology
Propaquizafop	$LC_{50} > 2500 \text{ mg/m}^3 - Low acute inhalation toxicity}$

LIST OF STUDIES TO BE GENERATED, STILL ONGOING OR AVAILABLE BUT NOT PEER REVIEWED

- The specification for the active substance and impurities is not justified by the available data. This includes the specification for the *S* isomer which was a separate data gap in the evaluation table (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).
- The change in the manufacturing process that resulted in impurities CGA 320116 and CGA 328714 no longer being produced should be explained in detail (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).
- The change in the manufacturing process that reduced the level of impurity Ro 41-5259 should be described in detail, including the date the process changed. In addition, this impurity should be analysed in the current production batches with a validated method of analysis (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).
- The possibility of nitrosamine formation during the manufacturing process should be addressed in full (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).
- Hydrolysis study in accordance with EEC A7 (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).
- Oxidising properties of the PPP (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).
- Surface tension of the formulation at 25°C for R65 classification (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).
- It must be demonstrated under field conditions that the persistent foam is not an issue (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).
- It must be demonstrated under field conditions that the emulsion stability is not an issue (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).
- The high temperature of incineration of the active substance should be justified (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).
- For the formulation, a new method of analysis is required that separates the *R* and *S* isomers (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).

- Storage stability study with analysis of the *R* and *S* isomer content (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).
- The methods of analysis for monitoring in food, feed and the environment needs to be reconsidered with the revised residue definitions (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 1).
- To provide clarification on the extracted but not characterised/identified radioactivity in cotton seeds (Dieterle P.Ch., 1990), otherwise a metabolism study in one oilseed crop with special focus on the nature of residues in seeds is requested (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 3.1.1).
- To clarify the conditions the samples were stored between sampling and analyses in the cotton metabolism study (Dieterle P.Ch., 1990) (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 3.1.1).
- To provide clarification on the extracted but not characterised/identified radioactivity in the sugar beet roots and leaves (Rumbeli, R., 1991), otherwise a new metabolism study using the phenyl label is requested or to present a justification why such a study is not necessary (relevant for all uses evaluated, data gap identified by meeting of experts June 2008, proposed submission date unknown, refer to section 3.1.1).
- Photolytic half-lives for propaquization and quizalofop are not available (relevant for all uses evaluated, data gap identified by meeting of experts PRAPeR 52, not essential to finalise the risk assessment, proposed submission date unknown, refer to section 4.2.1).
- Degradation rates ($DT_{50 \text{ system}}$, $DT_{50 \text{ water}}$, $DT_{50 \text{ sed}}$) for propaquization and its metabolites quizalofop, hydroxy-quizalofop, dihydroxy-quinoxaline and hydroxy-quinoxaline derived from the water/sediment study (information available in the final addendum to the DAR, July 2008, not peer reviewed, refer to section 4.2.1).
- An second algae toxicity study is required (relevant for all representative uses evaluated; level 4 data requirement identified by the rapporteur Member State, data gap confirmed in meeting of experts (PRAPeR 53); the study was submitted to the rapporteur Member State and assessed in the addendum from August 2006, but not included in the peer review in view of the restrictions laid down in Commission Regulation (EC) No. 1095/2007.; refer to section 5.2).
- A formulation study on *Lemna gibba* is required (relevant for all representative uses evaluated; level 4 data requirement identified by the rapporteur Member State, data gap confirmed in meeting of experts (PRAPeR 53); the study was submitted to the rapporteur Member State and assessed in the addendum from August 2006, but not included in the peer review due to regulation 1095/2007; refer to section 5.2).
- A study to estimate the foliage half-life of propaquization or an aged residue study with *A*. *rhopalosiphi* is needed to address the in-field risk to non-target arthropods (relevant for all

representative uses evaluated; agreed at the meeting of Member State experts (PRAPeR 53); proposed submission date unknown; refer to section 5.4).

CONCLUSIONS AND RECOMMENDATIONS

Overall conclusions

This conclusion was reached on the basis of the evaluation of the representative uses as a herbicide on sugar beet and oilseed rape. Full details of the GAP can be found in the attached list of endpoints. The representative formulated product for the evaluation was 'Agil 100 EC', an emulsifiable concentrate (EC).

The meeting of experts were not able to conclude on the acceptability of any of the methods as none of the methods were capable of analysing for the original residue definition proposed in the DAR. As it is not possible to reconsider all the methods at this time no conclusion can be reached. A general data gap for reconsideration of the methods has been identified.

There are insufficient analytical methods as well as methods and data relating to physical, chemical and technical properties to ensure that quality control measurements of the plant protection product are possible. The specification of the technical material has not been accepted. The method of analysis for the formulation is identified as a data gap. The formulation was seen to perform poorly in some of the physical-chemical tests. And there are outstanding issues on possible relevant impurities.

In mammals, propaquizatop shows a low acute toxicity via the oral and dermal routes, as well as via inhalation; it is non-irritating to the skin and eyes. Skin sensitisation tests in guinea pigs gave positive results (R43 "May cause sensitisation by skin contact" was proposed). In repeated dose studies, liver was shown to be the target organ. The short-term toxicity No Observed Adverse Effect Levels (NOAELs) for rats and mice on the basis of liver effects were 6.25 and 10 mg/kg bw/day, respectively (Lowest Observed Adverse Effect Levels - LOAELs 25 and 30 mg/kg bw/day); in longterm studies the relevant NOAELs were set at 5 mg/kg bw/day for rats and 1.5 mg/kg bw/day for mice (LOAELs 25 mg/kg bw/day and 7.5 mg/kg bw/day, respectively). Propaquizafop did not show any genotoxic potential. Increased incidences of hepatocellular adenomas and carcinomas were seen in both rats and mice. In one study in rats, an increased incidence of Leydig cell tumors was also noted. Mechanistic studies performed in rats and mice indicate that propaquizafop acts as a peroxisome proliferator. Based on the occurrence of malignant tumours in two species (hepatocellular adenomas and carcinomas in rats and mice) and the increased incidence of Leydig cell tumours in rats, proposal for classification and labelling of propaquizafop as Carc. Cat. 3 R40 ("Limited evidence of a carcinogenic effect") was considered and proposed during the meeting. In a multigeneration reproductive toxicity study, there were no treatment-related effects on mating performance, fertility index, gestation length or gestation index. The relevant reproductive NOAEL

was 15 mg/kg bw/day, whereas the relevant maternal and offspring NOAEL was 3 mg/kg bw/day. In a rat developmental study, numbers of implantations, corpora lutea and viable foetuses were comparable among groups. No treatment-related skeletal malformations were observed in any dose group. The NOAEL for developmental toxicity was 20 mg/kg bw/day based on an increased incidence of dilated renal pelvis up to 50 mg/kg bw/day. The NOAEL for maternal toxicity was 50 mg/kg bw/day due to decreased body weight gain at 125 mg/kg bw/day. In rabbits, there were no treatment related malformations or developmental changes. The relevant maternal and developmental NOAELs were 6 mg/kg bw/day and 18 mg/kg bw/day, respectively. The Acceptable Daily Intake (ADI) of 0.015 mg/kg bw/day was based on the NOAEL of 1.5 mg/kg bw/day from the mouse longterm study (SF 100). The NOAEL of 6.25 mg/kg bw/day from the rat 90 day study was the basis for the Acceptable Operator Exposure Level (AOEL) of 0.04 mg/kg bw/day, SF 100 and limited oral absorption (65%). Based on the acute toxicological profile of propaquizafop, the Acute Reference Dose (ARfD) was not allocated. The operator, worker and bystander exposure assessment is below the AOEL even without the use of Personal Protective Equipment (PPE).

The metabolism of propaquizafop has been investigated in cotton, soybean, lettuce and sugar beet using ¹⁴C-propaguization labelled on the phenyl and/or the guinoxaline moiety. The metabolism proceeds primarily with the hydrolysis of the ester link to yield quizalofop followed by the loss of the propionyl moiety leading to quizalofop-phenol, these metabolites being also observed as conjugates. Further metabolism occurs by hydroxylation of the quinoxaline moiety giving hydroxy-quizalofop and hydroxy-quizalofop-phenol. In addition and in a limited extent, the presence of quinoxaline metabolites and phenoxy acid metabolites indicated a cleavage of the oxygen bond of the molecule. In the sugar beet study, the metabolites quizalofop-phenol, hydroxy-quizalofop-phenol, hydroxyquinoxaline and dihydroxy-quinoxaline were detected in leaves and roots in similar proportions to propaquizatop and quizalofop. However, taking into account the overall low residue levels expected in leaves and roots at harvest, these metabolites were not included in the plant residue definition. Finally, considering that the radioactivity was not sufficiently characterized in sugar beet and in cotton seeds the notifier was asked to provide clarifications on the uncharacterized radioactivity unless new metabolism studies on root crop on oilseed crop should be submitted. In conclusion and provisionally the experts proposed the following residue definition for monitoring and risk assessment:

"Sum of propaquizafop and quizalofop, expressed as quizalofop (sum of isomers)" Considering the metabolism studies performed with the three quizalofop esters, a common residue definition for monitoring and risk assessment was proposed for propaquizafop, quizalofop-P-ethyl and quizalofop-P-tefuryl as:

"Sum of quizalofop-esters, quizalofop and quizalofop conjugates expressed as quizalofop (sum of isomers)"

These definitions should remain provisional, pending the submission and the evaluation of the requested information on the toxicological relevance of the phenoxy metabolites observed in the

quizalofop-P-ethyl studies. After the meeting, the EFSA was of the opinion that there is no need to include the conjugates in the residue definition for monitoring.

Supervised residue trials were submitted to support representative uses on rape seed and sugar beet. Samples were analysed using a method covering propaquizafop, quizalofop and quizalofop-phenol. Although this method was not strictly in line with the residue definition, results were considered as valid since the scope of this method was wider than the proposed residue definitions. The storage stability study showed the residues of propaquizafop, quizalofop and quizalofop-phenol to be stable under deep freeze storage conditions for at least 2 years in soya, rapeseed and tomato matrices. The behaviour of the residues in processing products was not investigated due to the low residue levels detected in the raw agricultural products.

A rotational crop study performed with ¹⁴C-propaquizafop labelled on the quinoxaline moiety was provided. Propaquizafop was not observed in the different rotational plant parts investigated and the detected metabolites (quizalofop, quizalofop-phenol and their hydroxy derivatives) have also been identified in the primary crop studies, suggesting a similar metabolic pathway in both primary and rotational crops. Taking into account the residue levels observed in plants at harvest, it was concluded that no significant residues of propaquizafop or its metabolites are expected in rotational crops.

Metabolism studies in lactating goat and laying hen were provided. However, the meeting of experts concluded that no residue definitions can be established on the basis of these studies since the characterisation of the radioactivity was not sufficiently investigated in some matrices, especially in fat. However, and taking into account the low residues levels observed in rapeseed and sugar beet, the experts agreed that there is no need to set a residue definition in products of animal origin for propaquizafop at present. No feeding study was provided, the trigger value of 0.1 mg/kg in diet being not exceeded.

Considering the comparative metabolite distribution in rat and goat for quizalofop-P-ethyl and propaquizafop, the experts discussed whether a supplementary metabolism study on pig should be requested. The metabolism in rats and ruminants was similar qualitatively but differences were observed quantitatively. Higher residues were detected in rat on an equivalent mg/kg bw basis and the notifiers were asked to provide explanations for these quantitative differences. Such a request is not relevant for propaquizafop at present, but this point would have to be considered if new uses beyond those supported in this review lead to a significant residue intake by animals.

No chronic risk for the consumer resulting from the use of propaquizafop according to the representative uses on sugar beet and oilseed rape is expected since the Theoretical Maximum Daily Intake (TMDI) using various calculation models was at most 21% of the ADI (0.015 mg/kg bw/d) using the UK model. No acute evaluation was performed as no ARfD was set for propaquizafop.

Based on the available supervised residue trials and the proposed residue definition a MRL of 0.05* mg/kg was proposed on sugar beet and rape seed, these MRLs being consistent with the proposals done for quizalofop-P-ethyl and quizalofop-P-tefuryl on these crops.

The information available on the fate and behaviour in the environment is sufficient to carry out an appropriate environmental exposure assessment for propaquizafop at the EU level. Degradation rates $(DT_{50 \text{ system}}, DT_{50 \text{ water}}, DT_{50 \text{ sed}})$ for propaquizafop and its metabolites derived from the water/sediment study were not peer reviewed. However, a low risk assessment to aquatic organisms was identified based on the maximum PEC values. For the applied for intended uses, the potential for groundwater exposure by propaquizafop and its metabolites quizalofop, hydroxy-quizalofop, dihydroxy-quinoxaline, and hydroxy-quinoxaline above the parametric drinking water limit of 0.1 µg/L is low.

The lower metabolite ecotoxicity endpoints available in the dossier for propaquizafop, quizalofop-Pethyl and quizalofop-P-tefuryl were used in the risk assessments of propaquizafop. The acute and short-term risk to birds was assessed as low for the intended uses at tier one, as was the long-term risk to herbivorous birds. Further refinements were required to address the risk to insectivorous birds. The rapporteur Member State provided a refined risk assessment in an addendum after the expert meeting (Addendum, July 2008), based on yellow wagtail (Motacilla flava) as generic focal species feeding on a mixed small/large arthropod diet. A TER value of 14.8 was calculated using wet weight based PD refinements, indicating a low long-term risk to insectivorous birds from the intended uses. The first tier acute and long-term TERs were above the Annex VI trigger for mammals, indicating a low risk from the intended uses. All TERs for secondary poisoning to birds and mammals were above the Annex VI trigger, indicating a low risk from all intended uses. The acute risk from consumption of contaminated drinking water was assessed for the puddle scenario. TERs were above the Annex VI trigger of 10 for both birds and mammals. The risk to herbivorous birds and mammals from plant metabolites was not addressed in the DAR or during the peer review. Mammal toxicity and metabolism data for quizalofop-P-ethyl, however, suggests that the risk to herbivorous mammals from plant metabolites was covered by the risk assessment for quizalofop-P-ethyl. Propaquizafop was found to be very toxic to aquatic organisms, with fish as the most sensitive species tested. A comparable toxicity was identified for the macrophyte Glyceria fluitans exposed to the metabolite quizalofop. FOCUS Step 3 exposure refinements were required to identify a low risk to aquatic organisms. For use in sugar beet all FOCUS Step 3 scenarios indicated a low risk to aquatic organisms, whereas only 3 out of 5 scenarios for spring use in oilseed rape and 2 out of 6 in winter oilseed rape indicated a low risk to aquatic organisms. The risk to sediment dwellers and the risk from bioaccumulation were assessed as low. The risk to non-target arthropods needed to be refined further to address the in-field risk to Aphidius rhopalosiphi. A no-spray buffer zone of 5 m was required to identify a low risk to the non-target plants, based on the most sensitive vegetative vigour endpoint for oat.

The risk to bees, earthworms, biological methods for sewage treatment and other soil non-target macro- and micro-organisms was assessed as low.

Particular conditions proposed to be taken into account to manage the risk(s) identified

• An in-field no-spray buffer zone of 5 m was required for all intended uses to conclude a low risk to non-target plants.

CRITICAL AREAS OF CONCERN

- The specification has not been agreed
- The acceptability of monitoring methods has not been concluded.
- It was not possible to finalise the risk assessment for aquatic organisms.
- It was not possible to finalise the in-field risk assessment for non-target arthropods.

APPENDIX 1 – AMALGAMATED LIST OF ENDPOINTS FOR THE ACTIVE SUBSTANCE AND THE REPRESENTATIVE FORMULATION

(Abbreviations used in this list are explained in appendix 2)

Identity, Physical and Chemical Properties, Details of Uses, Further Information

	Propaquizafop (a variant of quizalofop-P)					
Function (e.g. fungicide)	Herbicide					

Rapporteur Member State	Italy
Co-rapporteur Member State	none

Identity (Annex IIA, point 1)

Chemical name (IUPAC) ‡	2-isopropylidenamino-oxyethyl (<i>R</i>)-2-[4-(6-chloro- quinoxalin-2-yloxy)phenoxy]propionate
Chemical name (CA) ‡	(<i>R</i>)-2-[4-[(6-chloro-2-quinoxalinyl)oxy]phenoxy]- propionic acid 2-[[(1- methylethylidene)amino]oxy]ethyl ester
CIPAC No ‡	713
CAS No ‡	111479-05-1
EC No (EINECS or ELINCS) ‡	not available
FAO Specification (including year of publication) ‡	not available
Minimum purity of the active substance as manufactured ‡	Open
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	Toluene maximum content 5 g/kg Open for the other relevant impuritity Ro 41-5259
Molecular formula ‡	C ₂₂ H ₂₂ ClN ₃ O ₅
Molecular mass ‡	443.9 g/mol
Structural formula ‡	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Physical and chemical properties (Annex IIA, point 2)

Melting point (state purity) ‡	66.3°C (purity 99.9%)
Boiling point (state purity) ‡	Not applicable
Temperature of decomposition (state purity)	260°C (purity 99.1%)
Appearance (state purity) ‡	Off white powder (purity 99.1%)
	Orange to brown mixture of fine powder and granular material (purity: technical material)
Vapour pressure (state temperature, state purity) ‡	4.395 x 10 ⁻¹⁰ Pa at 25°C (99.9%)
Henry's law constant ‡	9.2 x 10 ⁻⁸ Pa m ³ /mol @ 20°C
Solubility in water (state temperature, state purity and pH) ‡	Propaquizafop – 0.63 mg/L at 20°C (pH = 6.8) (99.9%)
	Quizalofop-P – 7500 mg/L at 20°C (pH = 7) (98.3%)
Solubility in organic solvents ‡ (state temperature, state purity)	Solubility at 25°C (94.2%)Acetone>500 g/lDichloromethane>500 g/lEthyl acetate>500 g/lHexane11 g/lMethanol76 g/lOctanol30 g/lToluene>500 g/l
Surface tension ‡ (state concentration and temperature, state purity)	53.3-55.4 mN/m at 20°C (filtered of 10.0 g/L suspensions) (94.2%)
Partition co-efficient ‡ (state temperature, pH and purity)	Propaquizatop - $\log P_{O/W} = 4.78$ at 25 °C (pH neutral) (99.9 %)
	Quizalofop-P - log $P_{O/W}$ = 1.518 at 20 °C (pH = 4.6) (98.3 %)
Dissociation constant (state purity) ‡	Propaquizafop - $pKa_1 = -2.3$ (99.9%) Quizalofop-P - $pKa_1 = 6.14$ (98.3%) There is no dissociation between pH 4 and 9.

UV/VIS absorption (max.) incl. ε ‡ (state purity, pH)	- Propaquizafop - UV/Vis: Molar adsorption coefficients (ϵ) were found at the following wavelength maxima (λ_{max}) (99.1%)
	$\frac{\text{Neutral}}{235.0 \text{ nm } \varepsilon} = 30500$ 334.0 nm ε = 5850
	$\frac{\text{Acidic}}{235.0 \text{ nm } ε} = 30000$ 334.0 nm ε = 5810
	$\frac{\text{Alkaline}}{235.0 \text{ nm } \epsilon} = 29700$ $334.0 \text{ nm } \epsilon = 5790$ No absorbance found between 400 and 750 nm
Flammability ‡ (state purity)	Not flammable, no self-ignition (94.2%)
Explosive properties ‡ (state purity)	Not explosive (94.2 %)
Oxidising properties ‡ (state purity)	Not oxidising (94.2 %)

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

Summary of representative uses evaluated (*Propaquizafop*)*

Crop and/ or situation	Member State, Country or Region	Product name	F G or I	Pests or Group of pests controlled	Prep	aration	Application				Application rate per treatment (for explanation see the text in front of this section)			PHI (days)	Remarks
(a)			(b)	(c)	Type (d-f)	Conc. of as (i)	method kind (f-h)	growth stage & season (j)	number min/ max (k)	interval between applications (min)	g as/hL (l) min – max	water L/ha min – max	g as/ha (l) min – max	(m)	
e.g. Sugar beet	Northern and Southern Europe	Agil 100 EC	F	Monocotyl weeds	EC	100 g/L	Foliar spray	Post-em: crop GS: BBCH 12- 39 weed GS: BBCH 12- 29	1	n/a	40-100	200- 500	200	n/a	2.0 litre product/ha
Oilseed rape	Northern and Southern Europe	Agil 100 EC	F	Monocotyl weeds	EC	100 g/L	Foliar spray	Post-em: Spring, crop GS: BBCH 21- 39 weed GS: BBCH 13- 29 Autumn, crop GS: BBCH 13- 29 weed GS:	1	n/a	40-100	200- 500	200	n/a	[1][2]

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

Crop and/ or situation	Member State, Country or Region	Product name	F G or I	Pests or Group of pests controlled	Prep	aration	Application			(for exp	lication ra treatmen lanation so nt of this s	it ee the text	PHI (days)	Remarks	
(a)			(b)	(c)	Type (d-f)	Conc. of as (i)	method kind (f-h)	growth stage & season (j)	number min/ max (k)	interval between applications (min)	g as/hL (l) min – max	water L/ha min – max	g as/ha (l) min – max	(m)	
								BBCH 12- 25							

[1] The risk assessment has revealed data gap(s) in section 1.[2] The risk assessment has revealed a risk (exceedance of relevant threshold) in section 5.

*	For uses where the column "Remarks" is marked in grey further consideration is necessary.	(i)	g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for
	Uses should be crossed out when the notifier no longer supports this use(s).		the variant in order to compare the rate for same active substances used in different variants (e.g.
(a)	For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the		fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to
	use situation should be described (e.g. fumigation of a structure)		give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(b)	Outdoor or field use (F), greenhouse application (G) or indoor application (I)	(j)	Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN
(c)	e.g. biting and suckling insects, soil born insects, foliar fungi, weeds		3-8263-3152-4), including where relevant, information on season at time of application
(d)	e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)	(k)	Indicate the minimum and maximum number of application possible under practical conditions of use
(e)	GCPF Codes - GIFAP Technical Monograph No 2, 1989	(1)	The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha
(f)	All abbreviations used must be explained		instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(g)	Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench	(m)	PHI - minimum pre-harvest interval
(h)	Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of		
	equipment used must be indicated		

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles

Methods of Analysis

Analytical methods for the active substance (Annex IIA, point 4.1)

Technical as (analytical technique)	HPLC/UV
Impurities in technical as (analytical technique)	HPLC/UV; GC/FID
Plant protection product (analytical technique)	Open

Analytical methods for residues (Annex IIA, point 4.2)

Residue definitions for monitoring purposes

Food of plant origin	Sum propaquizafop + quizalofop expressed as quizalofop		
Food of animal origin	Not necessary considering the supported uses evaluated in this peer review		
Soil	Propaquizafop		
Water surface	Propaquizafop		
drinking/ground	Propaquizafop		
Air	Propaquizafop		

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)	Open
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	Open

Soil (analytical technique and LOQ)	Open
Water (analytical technique and LOQ)	Open

Air (analytical technique and LOQ)	Open
Body fluids and tissues (analytical technique and LOQ)	Not required [substance is not classified as toxic (T) or very toxic (T^+)]

Classification and proposed labelling with regard to physical and chemical data (Annex IIA, point 10)

	RMS/peer review proposal
Active substance	None

Impact on Human and Animal Health

Absorption, distribution, excretion and metabolism (toxicokinetics) (Annex IIA, point 5.1)

Rate and extent of oral absorption ‡	Propaquizafop was absorbed over a long period (Cmax 8-12 h), with an oral absorption value of 65%.		
Distribution ‡	Generally distributed with highest levels in blood, liver and kidney		
Potential for accumulation ‡	None		
Rate and extent of excretion ‡	Rapidly excreted in faeces and urine		
Metabolism in animals ‡	Extensively metabolised. Major metabolites are the free acid of the parent compound and further oxidation products		
Toxicologically relevant compounds ‡ (animals and plants)	Propaquizafop		
Toxicologically relevant compounds ‡ (environment)	Propaquizafop		

Acute toxicity (Annex IIA, point 5.2)

Rat LD ₅₀ oral ‡	5000 mg/kg bw	
Rat LD ₅₀ dermal ‡	2000 mg/kg bw	
Rat LC ₅₀ inhalation ‡	$> 2500 \text{ mg/m}^3$	
Skin irritation ‡	Non-irritating	
Eye irritation ‡	Non-irritating	
Skin sensitisation ‡	Sensitizer (Magnusson & Kligman)	R43; Xn

Short term toxicity (Annex IIA, point 5.3)

Target / critical effect ‡	Hepatotoxicity		
Relevant oral NOAEL ‡	6.25 mg/kg bw/day (rat)10 mg/kg bw/day (mouse)20 mg/kg bw/day (dog)		
Relevant dermal NOAEL ‡	250 mg/kg bw/day (rat)		

Relevant inhalation NOAEL ‡	N/A	

Genotoxicity ‡ (Annex IIA, point 5.4)

Non-genotoxic	
---------------	--

Long term toxicity and carcinogenicity (Annex IIA, point 5.5)

Target/critical effect ‡	Hepatotoxicity	
Relevant NOAEL ‡	1.5 mg/kg bw/day (18 months - mouse)5 mg/kg bw/day (2 years - rat)	
Carcinogenicity ‡	Rat and mouse hepatic neoplasms (peroxisome proliferator); Leydig cell tumour production	R40

Reproductive toxicity (Annex IIA, point 5.6)

Reproduction toxicity

Reproduction target / critical effect ‡	Increased resorption rat/delayed eye opening in the offspring	
Relevant parental NOAEL ‡	3 mg/kg bw/day	
Relevant reproductive NOAEL ‡	15 mg/kg bw/day	
Relevant offspring NOAEL ‡	3 mg/kg bw/day	

Developmental toxicity

Developmental target / critical effect ‡	Increased number of resorption rabbit
Relevant maternal NOAEL ‡	6 mg/kg bw/day (rabbit) 50 mg/kg bw/day (rat)
Relevant developmental NOAEL ‡	18 mg/kg bw/day (rabbit) 20 mg/kg bw/day (rat)

Neurotoxicity (Annex IIA, point 5.7)

Acute neurotoxicity ‡	Not a neurotoxicant	
-----------------------	---------------------	--

Repeated neurotoxicity ‡	Not a neurotoxicant	
Delayed neurotoxicity ‡	Not a neurotoxicant	

Other toxicological studies (Annex IIA, point 5.8)

Mechanism studies ‡	Peroxisome proliferator (rat and mouse)
Studies performed on metabolites or impurities ‡	Metabolite CGA 289740 induced a two-fold increase in revertants colonies in S. typhimurium TA98, only in the presence of exogenous metabolic activation. Due to the lack of any relationship with the dose applied, the biological significance of this finding is equivocal. Metabolite CGA 289742 did not induce gene mutations in the strains of S. typhimurium and E. coli tested

Medical data ‡ (Annex IIA, point 5.9)

No manufacturing incidents reported. Manufactured in closed systems.

Summary (Annex IIA, point 5.10)	Value	Study	Safety factor
ADI ‡	0.015 mg/kg bw/day	Chronic mouse	100
AOEL ‡	0.04 mg/kg bw/day	90 day rat (oral absorption rate 65%)	100
ARfD ‡	Not necessary		

Dermal absorption ‡ (Annex IIIA, point 7.3)

× •	10% for the concentrate and for the dilution as
	default dermal absorption value

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

Exposure scenarios (Annex IIIA, point 7.2)

Operator	% use of AOEL from use of German model:Without PPE: 62.5With PPE (gloves, standard protective equipment, sturdy footwear during mixing/loading and application): 2.5
	<u>% use of AOEL from use of UK model:</u> Without PPE: 196 (20 L), 259 (5 L), 592 (1 L) With gloves during mixing/loading and application: 31.5 (20 L), 38 (5 L), 71 (1 L)
Workers	German Uniform principles: Without PPE: ~50 % of the AOEL
Bystanders	Using Ganzelmeyer spray drift values: All crop scenarios: 10 % of the AOEL

Classification and proposed labelling with regard to toxicological data (Annex IIA, point 10)

	RMS/peer review proposal
Substance classified (name)	Xn; R43; R40

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

Metabolism in plants (Annex IIA, point 6.1 and 6.7, Annex IIIA, point 8.1 and 8.6)

Plant groups covered	Leafy vegetable (lettuce), Root/tuber crops (sugar beet) and Oilseeds (cotton seed, soybeans) foliar treatment
Rotational crops	Spring wheat, spinach and sugar beet
Metabolism in rotational crops similar to metabolism in primary crops?	Yes.
Processed commodities	Not applicable
Residue pattern in processed commodities similar to residue pattern in raw commodities?	Not applicable
Plant residue definition for monitoring	Sum propaquizafop and quizalofop expressed as quizalofop (sum of isomers) (Provisional)
Plant residue definition for risk assessment	Sum propaquizafop and quizalofop expressed as quizalofop (sum of isomers) (Provisional)
Conversion factor (monitoring to risk assessment)	Not relevant

Metabolism in livestock (Annex IIA, point 6.2 and 6.7, Annex IIIA, point 8.1 and 8.6)

Animals covered	Goats and hens
Time needed to reach a plateau concentration in milk and eggs	Study No. 047880 H. Ellgehausen, 1985a - Milk Plateau level $(0.46 - 0.95 \text{ mg/kg})$ at 3-4 days. Study No. 047891 H. Ellgehausen, 1985b - Milk Plateau level $(0.42 - 0.71 \text{ mg/kg})$ at 3-4 days.
Animal residue definition for monitoring	Not necessary considering the supported uses evaluated in this peer review
Animal residue definition for risk assessment	Not necessary considering the supported uses evaluated in this peer review
Conversion factor (monitoring to risk assessment)	None
Metabolism in rat and ruminant similar (yes/no)	No: Quantitative differences were observed. Clarification was requested from the applicant (PRAPeR 55).
Fat soluble residue: (yes/no)	To be reconsidered on the basing of the new goat metabolism study requested during the PRAPeR 55

Residues in succeeding crops (Annex IIA, point 6.6, Annex IIIA, point 8.5)

Stability of residues (Annex IIA, point 6 introduction, Annex IIIA, point 8 Introduction)

Residue of propaquizafop, quizalofop and quizalofop-phenol stable during frozen storage for
at least 2 years in soybean, rapeseed, tomato, sugar
beet (leaves and roots) and carrots.

Residues from livestock feeding studies (Annex IIA, point 6.4, Annex IIIA, point 8.3)

	Ruminant:	Poultry:	Pig:
	Conditions of req	uirement of feedin	g studies
Expected intakes by livestock ≥ 0.1 mg/kg diet (dry weight basis) (yes/no - If yes, specify the level)	No	No	No
Potential for accumulation (yes/no):	No	No	No
Metabolism studies indicate potential level of residues ≥ 0.01 mg/kg in edible tissues (yes/no)	No	No	No
	and poultry st	Specify the feeding tudies considered a n matrices : Mean	s relevant)
Muscle	not required	not required	not required
Liver	not required	not required	not required
Kidney	not required	not required	not required
Fat	not required	not required	not required
Milk	not required		
Eggs		not required	

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

Summary of residues data according to the representative uses on raw agricultural commodities and feedingstuffs (Annex IIA, point 6.3, Annex IIIA, point 8.2)

Сгор	Northern or Mediterranea n Region, field or glasshouse	Trials results relevant to the representative uses (a)	Recommendation /comments	MRL estimated from trials according to the representative use	HR (mg/kg) (c)	STMR (mg/kg) (b)
Sugar beet	Northern (Field)	Rate: 200 g ai/ha; 1 application; PHI = 49-171days Roots : 19x <0.02, 10x <0.05 Leaves : 15x <0.02, 2x 0.02, 2x 0.03, 0.04, 6x <0.05, 2x 0.06, 0.11		0.05	0.05	0.02
	Southern (Field)	Rate: 0.2 kg ai/ha; 1 application; PHI = 60-153 days Roots : 6x <0.02, 2x <0.05 Leaves : 2x <0.02, 0.04, <0.05, 0.05		0.05	0.05	0.02
Oilseed rape	Northern (Field)	Rate: 0.2 kg ai/ha; 1 application; PHI = 71-270 days Seeds: 2x 0.02, 2x 0.03, 14x < 0.05		0.05	0.05	0.05
	Southern (Field)	Rate: 0.2 kg ai/ha; 1 application; PHI = 157 and 211 days Seeds: $2x < 0.05$		0.05	0.05	0.05

(a) Numbers of trials in which particular residue levels were reported *e.g.* $3 \ge 0.01$, $1 \ge 0.01$, $6 \ge 0.02$, $1 \ge 0.04$, $1 \ge 0.08$, $2 \ge 0.1$, $2 \ge 0.15$, $1 \ge 0.17$ (b) Supervised Trials Median Residue *i.e.* the median residue level estimated on the basis of supervised trials relating to the representative use (c) Highest residue

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles http://www.efsa.europa.eu

Consumer risk assessment (Annex IIA, point 6.9, Annex IIIA, point 8.8)

ADI	0.015 mg/kg bw/day
TMDI (% ADI) according to WHO European diet	<1% ADI for adults
TMDI (% ADI) according to national (to be	calculated with MRL of 0.05 mg/kg
specified) diets	UK PSD Consumer Model Maximum TMDI 21% of the ADI for Toddler
	BBA German model, the TMDI predicted is : <1% of the ADI for 4 - 6 year old female children
	French model, the TMDI predicted is: <1%% of the ADI for adults
IEDI (WHO European Diet) (% ADI)	Not considered necessary
NEDI (specify diet) (% ADI)	None
Factors included in IEDI and NEDI	None
ARfD	Not necessary
IESTI (% ARfD)	None
NESTI (% ARfD) according to national (to be specified) large portion consumption data	None
Factors included in IESTI and NESTI	None

Processing factors (Annex IIA, point 6.5, Annex IIIA, point 8.4)

Crop/ process/ processed product	Number of	Processing factors		Amount	
	studies	Transfer factor	Yield factor	transferred (%) (Optional)	
Not relevant	Not relevant	Not relevant	Not relevant	Not relevant	

Proposed MRLs (Annex IIA, point 6.7, Annex IIIA, point 8.6)

Sugar beet	0.05* mg/kg
Oilseed rape	0.05* mg/kg

When the MRL is proposed at the LOQ, this should be annotated by an asterisk after the figure.

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

Fate and behaviour

FOREWORD:

Propaquizafop is an ester variant of the active substance quizalofop-P. There are other two other esters of the same active substance, namely quizalofop-P-tefuryl and quizalofop-P-ethyl, which were notified 3B active substances.

During the peer review process, from a comparison of the routes of degradation of the three active substances in the environmental compartments it was clear that, once quizalofop is formed, the degradation pathways are very similar. In particular, the following major (> 10% AR) metabolites are in common to two or all the three active substances in the different environmental compartments: -quizalofop

aerobic soil degradation: quizalofop-P-tefuryl, quizalofop-P-ethyl, propaquizafop		
water:	quizalofop-P-tefuryl, quizalofop-P-ethyl, propaquizafop	
sediment:	quizalofop-P-tefuryl, quizalofop-P-ethyl, propaquizafop	
-hydroxy-quizalofop		
aerobic soil degradation	on: quizalofop-P-tefuryl, quizalofop-P-ethyl, propaquizafop	
sediment:	propaquizafop	
-dihydroxy-quinoxaline		
aerobic soil degradation: quizalofop-P-tefuryl, quizalofop-P-ethyl, propaquizafop		
sediment:	quizalofop-P-tefuryl, propaquizafop	

The EFSA and the Member States considered fundamental for the exposure assessment to combine the three single data sets for these metabolites available in the DARs in order to derive a single set of endpoints for the fate properties of each metabolite. This exercise was performed during the meeting of experts PRAPeR 52 and leaded to an agreed list of endpoints for metabolites quizalofop, hydroxy-quizalofop and dihydroxy-quinoxaline (named as "amalgamated LoEP" in this conclusion). It was agreed that this amalgamated list of endpoints should be the basis for the exposure assessment of the above mentioned metabolites. It was decided also to draft two conclusions, one for propaquizafop and one for quizalofop-P-ethyl and quizalofop-P-tefuryl together. The present report reflects the outcome of the consultation of experts where the consistency between the endpoints used for predicted environmental concentrations (PEC) calculations reported in the propaquizafop DAR and the agreed endpoints was considered.

Route of degradation (aerobic) in soil (Annex IIA, point 7.1.1.1)

Mineralization after 100 days ‡	27.7-44.2% AR after 119-120 d, [¹⁴ C- quinoxaline]- label (n= 3) 28.3-28.4% AR after 120 d, [¹⁴ C- hydroquinone]-label (n= 2) 22.6 % AR after 121 d, [¹⁴ C- quinoxaline]-label (n= 1) Sterile conditions: no data available
Non-extractable residues after 100 days ‡	39.9-48.6% AR after 120 d, [¹⁴ C- quinoxaline]-label

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
http://www.efsa.europa.eu
65

ioi munuton	
	(n= 3)
	36-39.4% AR after 120 d, [¹⁴ C- hydroquinone]-label $(n=2)$
	43.6 % AR after 121 d, [¹⁴ C- quinoxaline]-label (n= 1)
	Sterile conditions: no data available
Metabolites requiring further consideration ‡ - name and/or code, % of applied (range and	quizalofop (CGA 287422)- 71.3-87.9 % AR at 1-3 d (n= 6; 20°C 40% MWC; 22°C 35% MWC).
maximum)	hydroxy quizalofop (CGA 294972)- 16.1-32.6% AR at 30-14 d (n= 3; 20°C 40% MWC; 22°C 35% MWC).
	dihydroxy quinoxaline (CGA 294970)– 13.7% AR at 56 d (n= 3; 20°C 40% MWC).
	hydroxy quinoxaline (CGA 290291) – 6.7-8.8% AR at 7-14 d (n= 3; 20°C 40% MWC).
	quizalofop-phenol (CGA 129674) – 5.4-5.7% AR at 1- 7 d (n= 6; 20°C 40% MWC).
	[¹⁴ C- quinoxaline] & [¹⁴ C- hydroquinone] labels

Route of degradation in soil - Supplemental studies (Annex IIA, point 7.1.1.1.2)

Anaerobic degradation ‡

Mineralization after 100 days	1.7-1.9 % AR at 62-61 d, [14 C- hydroquinone] label (n= 2)
	Sterile conditions: no data available
Non-extractable residues after 100 days	30.7-34.4 % AR at 29-0 d, [¹⁴ C- hydroquinone] label (n= 2)
	Sterile conditions: no data available
Metabolites that may require further consideration for risk assessment - name	quizalofop (CGA 287422)- 31.4-38.8 % AR at 29 -0 d (n= 2)
and/or code, % of applied (range and maximum)	hydroxy quizalofop (CGA 294972)- 12.1-17.0 % AR at 62-29 d (n= 2)
	[¹⁴ C- hydroquinone] label
Soil photolysis ‡	
Metabolites that may require further	Ouizalofop max 38.6% AR at 31 d (n=1)

Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum) Quizalofop max 38.6% AR at 31 d (n=1) Quizalofop-phenol max 3.5% AR at 31 d (n=1)

‡ Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
http://www.efsa.europa.eu
66

Rate of degradation in soil (Annex IIA, point 7.1.1.2, Annex IIIA, point 9.1.1)

Laboratory studies ‡

Propaquizafop				Aerobic co	nditions		
Soil type	OC %	рН	t. °C / % MWHC	DT ₅₀ /DT ₉₀ (d)	DT ₅₀ (d) 20 °C pF2/10kPa	St. (r ²)	Method of calculation
Loam (Mamouni 1999a) / PROP	2.02	7.18 [#]	20 °C / 40 %	<3/<3			
Loamy sand (Mamouni 1999a) / PROP	0.78	7.43#	20 °C / 40 %	<3/<3			
Sandy loam (Mamouni 1999a) / PROP	1.3	5.01#	20 °C / 40 %	<3/<3			
Sandy loam (Dieterle 1987a) / PROP	2.5	6.9	22 °C / 60 %	1.4 / 56 ^{\$}			Best-fit linear regression analysis
Loam (Dieterle 1987a) / PROP	3.2	7.5	22 °C / 60 %	1.2 / 51 ^{\$}			Best-fit linear regression analysis
Loam (Dennis 1991b) / PROP	2.7	7.7	20 °C / 40 %	0.09 / 2@			Best-fit linear regression analysis
Geomean/median	*	<u> </u>		1.3/2.2			

 $^{\#}$ = pH in KCl

^s = geomean of three values for the same soil (different application rate and radiolabel position) sandy loam DT_{50}/DT_{90} (d)= 1.1/87, 1.8/149, 1.2/31; loam soil DT_{50}/DT_{90} (d) = 1.0/82, 1.8/50, 0.8/22. [@] = geomean of two values for the same soil (different application rate) DT_{50}/DT_{90} (d) = 0.09/2, 0.09/2.

* = a worst case DT_{50} value of 3 d was considered for the 3 soils of the Mamouni 1999a study

PROP = the study presented in the DAR of propaquizafop

Met: Quizalofop	Aerobic conditions								
Soil type /Origin	OC (%)	рН	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	$\begin{array}{c} Molar\\ f.~f.\\ k_{dp}/k_{f}\\ from~ester\\ precur\\ sors \end{array}$	DT ₅₀ (d) 20 °C pF2/10kP a	St. (r ²)	Method of calculation	
Sandy l. (Dzialo, 2004, phenyl- l.)/TEF	1.0	6.3	20 °C / 45 %	55.9 / 185.6	*	49.2 ****	0.993	SFO, ModelMaker	
Sand (Dzialo, 2004, phenyl-label) /TEF	1.2	6.2	20 °C / 45 %	18.7 / 62.0	*	18.7 ****	0.984	SFO, ModelMaker	
Loam (Dzialo, 2004, phenyl-label) / TEF	0.90	5.9	20 °C / 45 %	42.4 / 141.0	*	41.05 ****	0.969	SFO, ModelMaker	
Clay l. (Dzialo, 2004, phenyl-label) /TEF	1.0	7.6	20 °C / 45 %	22.5 / 74.6	*	21.04 ****	0.984	SFO, ModelMaker	
Sandy loam (Völkel, 1998, quinoxaline-label) / TEF	1.4	6.3	20 °C / 40 %	14.1 / 47.0	1	14.0 ****	0.967	SFO, ModelMaker	
Silty clay l. (Völkel, 1998, quinoxaline-label) / TEF	3.1	7.4	20 °C / 40 %	59.4 / 197.4	1	45.7 ****	0.961	SFO, ModelMaker	
Sandy loam (Völkel, 1998, quinoxaline-label) / TEF	1.4	8.2	20 °C / 40 %	14.5 / 48.2	1	14.1 ****	0.968	SFO, ModelMaker	
Loam (Völkel, 1998, quinoxaline- label) / TEF	1.8	5.0	20 °C / 40 %	10.4 / 34.5	1	8.0 ****	0.951	SFO, ModelMaker	
Sandy loam (study FD7) /ET	2.1	7.5	10 °C / 40 %	54.5 / 181	0.925	24.8	0.970	SFO, ModelManager	
Sandy loam (Study FD8) /ET	1.8	7.1	20 °C / 40 %	28.0/93.0	0.880	28.0	0.976	SFO, ModelManager	

the text of tex of text of tex

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

Met: Quizalofop		Aerobic conditions									
Soil type /Origin	OC (%)	рН	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	$\begin{array}{c} Molar\\ f.~f.\\ k_{dp}/k_{f}\\ from~ester\\ precur\\ sors \end{array}$	DT ₅₀ (d) 20 °C pF2/10kP a	St. (r ²)	Method of calculation			
Sandy loam (Study FD9) / ET	2.5	7.1	10 °C / 40 %	74.3 / 247	0.863	33.8	0.961	SFO, ModelManager			
Sandy loam (Study FD13) / ET ****	3.3	6.6	20 °C / 49 %	182/603	0.701	181.5	0.966	SFO, ModelManager			
Silty clay loam (Study FD14) /ET	3.6	6.7	20 °C / 65 %	23.7 / 78.7	0.758	23.7	0.934	SFO, ModelManager			
Clay loam (Study DF14) /ET	4.6	7.9	20 °C / 47 %	39.6 / 132	0.806	39.6	0.980	SFO, ModelManager			
Loam (Mamouni 1999a) / PROP	2.02	7.18	20 °C / 40 %	7 / 24	*	7	0.998 5	SFO			
Loamy sand (Mamouni 1999a) / PROP	0.78	7.43	20 °C / 40 %	10 / 34	*	10	0.996	SFO			
Sandy loam (Mamouni 1999a) / PROP	1.3	5.01 #	20 °C / 40 %	14 / 45	*	11.6	0.989 4	SFO			
Sandy loam (Dieterle 1987a) / PROP	2.5	6.9	22 °C / 60 %	39/128.4 ^{\$}	*	46.0		FO, ModelMaker			
Loam (Dieterle 1987a) / PROP	3.2	7.5	22 °C / 60 %	31/102.6 ^{\$}	*	36.3		FO, ModelMaker			
Loam (Dennis 1991b) / PROP	2.7	7.7	20 °C / 40 %	14.8 / 48.7@	*	16.0		FO, ModelMaker			
Loam (Dennis 1991a) / PROP	2.7	7.7	7 Not considered for the risk assessment (see DAR p. 342) (same soil as Dennis 1999b)								

Endpoint identified by the EU-Commission as relevant for Member States when applying the Uniform Principles
 http://www.efsa.europa.eu
 69 c

Met: Quizalofop	Aerobic conditions							
Soil type /Origin	OC (%)	рН	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	Molar f. f. k _{dp} /k _f from ester precur sors	DT ₅₀ (d) 20 °C pF2/10kP a	St. (r ²)	Method of calculation
median						24.25		

* = Not available

** = Formation fraction from Quizalofop-P-tefuryl was assumed to be 1.0

*** = Mean formation fraction from Quizalofop-P-ethyl was informed to be 0.834

**** = Not considered acceptable in the DAR

***** = Values re-normalised to reference conditions based on the measured moisture content (in the DAR the moisture correction was made using default values)

 $^{\#}$ = pH in KCl

^s = geomean of three values for the same soil (different application rate and radiolabel position) sandy loam DT_{50}/DT_{90} (d)= 30/98, 45/148, 44/146; loam soil DT_{50}/DT_{90} (d) = 24/81, 38/127, 32/105. ^(a) = geomean of two values for the same soil (different application rate) DT_{50}/DT_{90} (d) = 22/74, 10/32.

TEF = the study presented in the DAR of quizalofop-P-tefuryl

ET = the study presented in the DAR of quizalofop-P-ethyl

PROP = the study presented in the DAR of propaquizafop

Note: concerning the longest lab soil DT50 for quizalofop (182days) is was agreed during the expert meeting that no accumulation calculation was necessary considering the results from the available field studies (longest DT50 around 40 days) and the large number of lab studies with shorter DT50.

Met: hydroxy- quizalofop		Aerobic conditions								
Soil type	OC (%)	pH (w)	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	$\begin{array}{c} Molar\\ f.~f.\\ k_{dp}/k_{f}\\ from\\ quizalofo\\ p \end{array}$	DT ₅₀ (d) 20 °C pF2/10kP a	St. (r ²)	Method of calculation		
Sandy l. (Dzialo, 2004, phenyl- l.)/ TEF	1.0	6.3	20 °C / 45 %	39.8 / 132.1	*	35.02 ****	0.993	SFO, ModelMaker		
Sand (Dzialo, 2004, phenyl-label) /TEF	1.2	6.2	20 °C / 45 %	7.0 / 23.3	*	7.00 ****	0.984	SFO, ModelMaker		
Loam (Dzialo, 2004, quinoxal label)/ TEF	0.90	5.9	20 °C / 45 %	17.3 / 57.4	*	16.71 ****	0.969	SFO, ModelMaker		
Clay l. (Dzialo, 2004, phenyl-label) /TEF	1.0	7.6	20 °C / 45 %	15.4 / 51.2	*	14.43 ****	0.984	SFO, ModelMaker		
Sandy loam (Völkel, 1998, quinoxaline-label) /TEF	1.4	6.3	20 °C / 40 %	11.2 / 37.2	0.36	11.1 ****	0.967	SFO, ModelMaker		
Silty clay l. (Völkel, 1998, quinoxaline-label) /TEF	3.1	7.4	20 °C / 40 %	69.4 / 230.4	0.36	53.3 ****	0.961	SFO, ModelMaker		
Sandy loam (Völkel, 1998, quinoxaline-label) / TEF	1.4	8.2	20 °C / 40 %	12.3 / 40.9	0.36	11.9 ****	0.968	SFO, ModelMaker		
Loam (Völkel, 1998, quinoxaline- label) / TEF	1.8	5.0	20 °C / 40 %	14.2 / 47.1	0.36	11.0 ****	0.951	SFO, ModelMaker		
Sandy loam (Study FD8) /ET	1.8	7.1	20 °C / 40 %	45.8 / 152	0.32	45.8	0.986	SFO, ModelManager		

Met: hydroxy- quizalofop		Aerobic conditions							
Soil type	OC (%)	pH (w)	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	$\begin{array}{c} Molar\\ f.~f.\\ k_{dp}/k_{f}\\ from\\ quizalofo\\ p \end{array}$	DT ₅₀ (d) 20 °C pF2/10kP a	St. (r ²)	Method of calculation	
Sandy loam (Study FD13) /ET	3.3	6.6	20 °C / 49 %	40.7 / 210	0.756	40.7	0.746	SFO, ModelManager	
Sandy loam (Study FD9)**** /ET	2.5	7.1	10 °C / 40 %	47.5 / 158	0.436	21.7	0.967	SFO, ModelManager	
Loam (Mamouni 1999a) / PROP	2.02	7.18	20 °C / 40 %	21 / 68	**	21	0.969	SFO	
Loamy sand (Mamouni 1999a) / PROP	0.78	7.43	20 °C / 40 %	12 / 39	**	12	0.970	SFO	
Sandy loam (Mamouni 1999a) / PROP	1.3	5.01 #	20 °C / 40 %	13 / 43	**	10.7	0.984	SFO	
median						15.6			

* = not available

**= no formation fraction, DT50 equates to observed decline after maximum formation.

**** = the results of study FD9 were erroneously not reported in the LoEP presented in the DAR ***** = values re-normalised to reference conditions based on the measured moisture content (in the DAR the moisture correction was made using default values) # = pH in KCl

TEF = the study presented in the DAR of quizalofop-P-tefuryl ET = the study presented in the DAR of quizalofop-P-ethyl PROP = the study presented in the DAR of propaquizafop

Met: Dihydroxy quinoxaline				Aerobi	c condit	ions		
Soil type	OC (%)	pH (w)	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	$\begin{array}{c} Molar\\ f.~f.\\ k_{dp}/k_{f}\\ from\\ quizalofo\\ p \end{array}$	DT ₅₀ (d) 20 °C pF2/10kP a	St. (r ²)	Method of calculation
Sandy loam (Völkel, 1998, quinoxaline-label) /TEF	1.4	6.3	20 °C / 40 %	106.7 / 354.4	0.1 quizalofo p	105.9 **	0.967	SFO, ModelMaker
Sandy loam (Völkel, 1998, quinoxaline-label) / TEF	1.4	8.2	20 °C / 40 %	68.9 / 228.8	0.1 quizalofo p	66.7 **	0.968	SFO, ModelMaker
Loam (Völkel, 1998, quinoxaline- label) / TEF	1.8	5.0	20 °C / 40 %	258.1 / 857.5	0.1 quizalofo p	199.9 **	0.951	SFO, ModelMaker
Sandy loam (Study FD13) / ET	3.3	6.6	20 °C / 49 %	55.5 / 184	1 hydro xy- quizal ofop	55.5	0.587	SFO, ModelManager
Clay (Study FD17) /ET	5.2	7.9	20 °C / 44 %	102 / 337	****	102	0.996	SFO
Sandy loam (Study FD17) / ET	2.8	6.5	20 °C / 46 %	53 / 175	****	53	0.997	SFO
Silty clay loam (Study FD17) / ET	4.1	6.6	20 °C / 70 %	42 / 139	****	42	0.998	SFO
Loam (Mamouni 1999a) / PROP	2.02	7.18	20 °C / 40 %	54/180	*	36	.874	SFO
Loamy sand (Mamouni 1999a) / PROP	0.78	7.43	20 °C / 40 %	58/190	*	37	.95	SFO
Sandy loam (Mamouni 1999a) / PROP	1.3	5.01 #	20 °C / 40 %	63/209	*	40.6	.935	SFO

Met: Dihydroxy quinoxaline		Aerobic conditions									
Soil type	OC (%)	pH (w)	t. °C / % MWHC	DT ₅₀ / DT ₉₀ (d)	$\begin{array}{c} Molar\\ f.~f.\\ k_{dp}/k_{f}\\ from\\ quizalofo\\ p \end{array}$	DT ₅₀ (d) 20 °C pF2/10kP a	St. (r ²)	Method of calculation			
median	•	•				54.3					

* = no formation fraction, DT50 equates to observed decline after maximum formation.

** = Values re-normalised to reference conditions based on the measured moisture content (in the DAR the moisture correction was made using default values)

*** = Formation fraction from hydroxy-quizalofop of 1.0 % was used

**** = The study was conducted using dihydroxy-quinoxaline

 $^{\#}$ = pH in KCl

TEF = the study presented in the DAR of quizalofop-P-tefuryl

ET = the study presented in the DAR of quizalofop-P-ethyl

PROP = the study presented in the DAR of propaquizafop

Met: Hydroxy quinoxaline		Aerobic conditions								
Soil type	OC %	рН	t. °C / % MWHC	DT ₅₀ /DT ₉₀ (d)	DT ₅₀ (d) 20 °C pF2/10kPa	St. (r ²)	Method of calculation			
Loam (Mamouni 1999a) / PROP	2.02	7.18#	20 °C / 40 %	46/154	46	0.832	SFO			
Loamy sand (Mamouni 1999a) / PROP	0.78	7.43#	20 °C / 40 %	65/217	65	0.967	SFO			
Sandy loam (Mamouni 1999a) / PROP	1.3	5.01#	20 °C / 40 %	71/235	59	0.947	SFO			
geomean	<u> </u>				56					

 $^{\#}$ = pH in KCl

PROP = the study presented in the DAR of propaquizafop

Parent	Aerobic condition	ons							
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	X ¹	рН	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (r ²)	DT ₅₀ (d) Norm.	Method of calculatio n
No data available									
Geometric mean/m	Geometric mean/median								

Field studies ‡ no reliable data available for propaquizafop

Field studies

Met: Quizalofop				Ae	robic cond	itions			
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).	OC (%)	рН	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (r ²)	DT ₅₀ (d) Norm.	Method of calculation
Sandy loam, oil seed rape / PROP	Switzerland	3.0	7.9	10	31	103	n.a.	N.a.	1 st order Timme and Frehse best- fit
Loamy sand, bare soil /ET	Germany	0.5	6.3	30	39.8	132	0.932	N.a.	SFO, ModelMan ager
Silty clay loam, bare soil /ET	France	1.2	7.8	30	33.6	112	0.953	N.a.	SFO, ModelMan ager
Silty loam sand, bare soil /ET	Spain	1.8	5.6	30	37.6	125	0.899	N.a.	SFO, ModelMan ager
Geometric mean/m	ledian		<u> </u>	<u> </u>					

N.a. = Not available**TEF** = the study presented in the DAR of Quizalofop-P-tefuryl **ET** = the study presented in the DAR of Quizalofop-P-ethyl **PROP** = the study presented in the DAR of propaguizafop

pH dependence ‡ (yes / no) (if yes type of dependence)

Soil accumulation and plateau concentration ‡

No Not required.

Met: Hydroxy- quizalofop		Aerobic conditions								
Soil type	Location	OC (%)	рН	Depth (cm)	DT ₅₀ (d) actual	DT ₉₀ (d) actual	St. (r ²)	DT ₅₀ (d) Norm.	Method of calculation	
Loamy sand, bare soil / ET	Germany	0.5	6.3	30	32.2	107	0.861	N.a.	SFO, ModelManage r	

ET = the study presented in the DAR of quizalofop-P-ethyl

Soil adsorption/desorption (Annex IIA, point 7.1.2)

Propaguizafop

ADSORPTION KOC: As propaquizafop is highly unstable in soil, its adsorption and desorption characteristics cannot be determined). Estimated value based on log Kow, according to Briggs 1989, was 2220 mL/g

ADSORPTION KD : not determined

Soil Type	OC %	Soil pH	Kd (mL/g)		Kf (mL/g)	Kfoc (mL/g)	1/n
Arithmetic mean/median							

pH dependence (yes or no)

Met: Quizalofop							
Soil Type	OC %	Soil pH	Kd (mL/g)	Koc (mL/g)	Kf (mL/g)	Kfoc (mL/g)	1/n
Clay / TEF	4.8	5.9			3.99	141	0.88
Sand /TEF	0.1	6.2			0.19	321	0.89
Sandy loam /TEF	3.1	6.3			8.69	477	0.78
Loam / TEF	0.8	6.7			0.62	133	0.85
Clay loam / TEF	5.1	8.1			4.9	332	0.71
Loam / TEF	0.1	6.1			10.6	356	0.69
Silty clay loam (pond sediment) /TEF	0.8	6.7			9.5*	1254*	0.72*
Sandy clay loam /ET	0.5	6.4			1.73	346	0.79
Sand /ET	2.0	5.3			4.23	212	0.79
Silty loam /ET	5.1	6.0			40.0	783	0.86
Light clay /ET	5.9	5.3			33.3	564	0.87
Loamy sand /ET	0.5	4.3			125	1782	0.8
Loamy sand /ET	7.0	3.1			9	1791	0.8
Clay /ET	3.9	6.0			8	214	0.8
Clay loam /ET	3.2	7.4			9	275	0.7
Sand /PROP	0.5	6.0			2.36	472	0.88
Silt loam /PROP	1.8	5.6			6.24	347	0.842
Clay-clay loam /PROP	2.4	7.3			9.29	387	0.822
Loam / PROP	1.2	6.9			5.27	439	0.855
median						356	0.811
pH dependence, Yes or No			No depe	endence			

* = This value has been considered as an outlier and it has not been taken into account in the calculation of the mean values. The test soil was a pond sediment, not an agricultural soil.

TEF = the study presented in the DAR of Quizalofop-P-tefuryl **ET** = the study presented in the DAR of Quizalofop-P-ethyl **PROP** = the study presented in the DAR of propaquizafop

Met: Hydroxy-quizalofop							
Soil Type	OC %	Soil pH	Kd	Koc	Kf	Kfoc	1/n
			(mL/g)	(mL/g)	(mL/g)	(mL/g)	
Sandy loam /TEF	2.3	5.6	2.8	122			1
Loam /TEF	1.3	7.4	2.2	172			1
Clay loam /TEF	4.7	7.5	8.6	184			1
Loamy sand /ET	7.0	3.1			110	1567	0.8
Clay loam /ET	3.2	7.4			10	302	0.8
Clay /ET	3.9	6.0			5	129	0.8
Sandy silt loam /PROP	2.3	7.5			1.7	74.4	1.07
Sandy loam /PROP	1.0	7.5			0.8	78.5	1.06
Sandy loam /PROP	1.1	5.2			1.6	141.1	0.94
median	median					141.1	1.00
pH dependence (yes or no)		No dependence					

TEF = the study presented in the DAR of quizalofop-P-tefuryl **ET** = the study presented in the DAR of quizalofop-P-ethyl **PROP** = the study presented in the DAR of propaquizafop

Met: Dihydroxy quinoxaline							
Soil Type	OC %	Soil pH	Kd	Koc	Kf	Kfoc	1/n
			(mL/g)	(mL/g)	(mL/g)	(mL/g)	
Sandy loam /TEF	2.3	5.6	11.0	480			1
Loam / TEF	1.3	7.4	11.5	901			1
Clay loam / TEF	4.7	7.5	68.6	1468			1
Loamy sand /ET	7.0	3.1			3	48	0.8
Clay loam /ET	3.2	7.4			22	694	0.7
Clay /ET	3.9	6.0			14	370	0.7

Sandy silt loam /PROP	2.3	7.5			8.5	370.6	0.63
Sandy loam /PROP	1.0	7.5			5.5	547.7	0.59
Sandy loam /PROP	1.1	5.2			6.7	609.2	0.66
median						547.7	0.70
pH dependence (yes or no)	lependence (yes or no)No dependence in the relevant soil pH range						

TEF = the study presented in the DAR of quizalofop-P-tefuryl **ET** = the study presented in the DAR of quizalofop-P-ethyl **PROP** = the study presented in the DAR of propaquizafop

Met: Quizalofop-phenol							
Soil Type	OC %	Soil pH	Kd	Koc	Kf	Kfoc	1/n
			(mL/g)	(mL/g)	(mL/g)	(mL/g)	
Sandy silt loam /PROP	2.3	7.5			56.0	2433.1	1.02
Sandy loam /PROP	1.0	7.5			49.5	4945.2	0.83
Sandy loam /PROP	1.1	5.2			85.1	7740.8	1.12
median						4945.2	1.02
pH dependence (yes or no)			No depe	endence			

PROP = the study presented in the DAR of propaquizafop

Met: Hydroxy-quinoxaline

ADSORPTION KOC: Estimated value using th software programme PCKOCWIN (Version 1.66, EPA 2000), was 522.4 mL/g

EFSA Scientific Report (2008) 204, 1-171 Conclusion on the pesticide peer review of propaquizafop

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

Mobility in soil (Annex IIA, point 7.1.3, Annex IIIA, point 9.1.2)

Column leaching ‡	Eluation (mm): 504 mm (soils n=4)
	Time period (d): 7 d (soils n=4)
	Eluation (mm): 200 mm (soils n=3)
	Time period (d): 2 d (soils $n=3$)
	Leachate: 0.034-4.07 % total residues/radioactivity in leachate
	Levels of radioactivity present in the leachates were too low to permit chromatographic investigations as to the nature of the material present
	17 to 62 % total residues/radioactivity retained in top 10 cm.
Aged residues leaching ‡	Aged for (d): 76 d (soil n=1)
	Time period (d): 2 d (soil n=1)
	Eluation (mm): 200 mm(soil n=1)
	Aged for (d): 30-31 d (soils n=2)
	Time period (d): 4-5 d (soils n=2)
	Eluation (mm): 508 mm(soils n=2)
	Analysis of soil residues post ageing (soil residues pre-leaching): 1.2-30 % propaquizafop, 31.1-52.9 % quizalofop, 7.5-19.3 % hydroxy-quizalofp, 0.5- 5.5 % quizalofop-phenol
	Leachate: 0.1-0.4 % total residues/radioactivity in leachate
	Levels of radioactivity present in the leachates were too low to permit chromatographic investigations as to the nature of the material present
	>80 % total residues/radioactivity retained in top 12 cm
	· · · · · · · · · · · · · · · · · · ·
Lysimeter/ field leaching studies ‡	No data available.

These studies were not performed because no evidence of leaching from laboratory experiments or computer modelling simulations was observed.

PEC (soil) (Annex IIIA, point 9.1.3)

Propaquizafop	
Parent: Propaquizafop	DT ₅₀ (d): 2.1 days
Method of calculation	Kinetics: SQRT 1.5 th order
	Field or Lab: representative worst case from laboratory studies normalised to $pF2$ and to $20^{\circ}C^{1}$
Application data	Crop: sugar beet and oilseed rape
	Depth of soil layer: 5cm
	Soil bulk density: 1.5g/cm ³
	% plant interception: 50
	Number of applications: 1
	Application rate(s): 200 g as/ha

¹from normalisation of $DT_{50} = 1.8$ d (single DT_{50} value before averaging the values from the same soil with different radiolabeling position and/or application rate). As the rsik to soil organism was performed on the basis of the initial PEC value, deviations on the selection of the appropriate soil DT_{50} does not influence the final assessment in this case.

PEC _(s) (mg/kg)		Single application Actual	Single application Time weig average		Multiple applicat Actual	Multiple application Time weighted average
Initial 0.13						
Short term 24h		0.08	0.11			
	2d	0.07	0.09			
	4d	0.05	0.08			
Long term 7d 0.04		0.07				
	28d	0.02	0.04			
	50d	0.01	0.03			
	100d	0.009	0.02			
Plateau concentration			Not requir	red		

Met: Quizalofop								
Metabolite Quizal				Molecular weight relative to the parent: 344.8				
Method of calcula	ition			g/mol	od during	the expert r	neeting PRAPeR	
				•	•		•	
		52 that the longest lab soil DT_{50} for quizalofop of 182 days, from the amalgamated list of endpoints, should be used for PECsoil calculations.						
				PEC _{ini} value was used in the risk assessment for soil organism.				
			-					
Application data				Application rate assumed: 68.3 g as/ha (assumed quizalofop is formed at a maximum of 87.9 % of the applied dose) or formation fraction (if sequential modelling is employed)				
PEC _(s)	Single		Single		Multiple		Multiple	
(mg/kg)	application		application	on	applicat	ion	application	
	Actual		Time we average	ighted	Actual		Time weighted average	
Initial	0.09							
		Plateau concentration		Not requir	red			

Met: Hydroxy-quizalofop	
Metabolite Hydroxy propaquizafop acid Method of calculation	Molecular weight relative to the parent: 360.8 g/mol PEC _{ini} value was used in the risk assessment for soil organism. It was agreed during the expert meeting PRAPeR 52 that the longest lab soil DT ₅₀ for hydroxy- quizalofop of 53.3 days, from the amalgamated list of endpoints, should be used for PEC _{soil} calculations.
Application data	Application rate assumed: 11.14 g as/ha (assumed hydroxy propaquizafop acid is formed at a maximum of 32.6 % of the applied dose) or

			formation fraction (if sequential modelling is employed)					
PEC _(s) (mg/kg)	Single application Actual	Single applicati Time we average		Multiple application Actual		Multiple application Time weighted average		
Initial	0.04							
	Platear concer	u ntration	Not required					
Met: Dihydroxy	quinoxaline							
Metabolite Dihyd Method of calcula Application data	Molecular weight relative to the parent: 196.6g/mol PEC_{ini} value was used in the risk assessment for soilorganism.It was agreed during the expert meeting PRAPeR52 that the longest lab soil DT_{50} for dihydroxy-quinoxaline of 200 days, from the amalgamated listof endpoints, should be used for PECsoilcalculations.Application rate assumed: 14.44 g as/ha (assumeddihydroxy quinoxaline is formed at a maximum of13.7 % of the applied dose) or formation fraction (ifsequential modelling is employed)							
PEC _(s) (mg/kg)	Single application Actual	Single applicati Time we		Multiple application Actual		Multiple application Time weighted		
T ''' 1	0.000	average				average		
Initial	0.008 Plateau concer	u ntration	Not required					
Met: Hydroxy qu	uinoxaline							
Metabolite Hydro Method of calcula	21		Molecular weight relative to the parent: 180.6 g/mol DT ₅₀ (d): 71 days ¹					

			Г	Kinetics: S	FO				
				Field or Lab: representative worst case from laboratory studies.					
Applicatio	on data			Application rate assumed: 3.58 g as/ha (assumed hydroxy quinoxaline is formed at a maximum of 8.8 % of the applied dose) or formation fraction (if sequential modelling is employed)					
PEC _(s)		Single	Single		Multiple		Multiple		
(mg/kg)		application	applicatio		applicati Actual	on	application		
		Actual	average	Time weighted			Time weighted average		
			average	average			avelage		
Initial		0.005							
Short tern	n 24h	0.005	0.005						
	2d	0.005	0.005						
	4d	0.005	0.005						
Long term	n 7d	0.004	0.005						
	28d	0.004	0.004						
	50d	0.003	0.004						
	100d	0.002	0.003						
Plateau				Not requi	red				

concentration Not

¹The appropriate DT_{50} value that should be used for PECsoil calculations should be 65 days (longest not normalised lab DT_{50}).

Route and rate of degradation in water (Annex IIA, point 7.2.1)

Hydrolytic degradation of the active substance and metabolites $> 10 \% \ddagger$	pH 5: 10.5 d at 25 °C Met Aminooxyethyl ester: 74.9 % AR (21 d)
	pH 7: 32.0 days at 25 °C Met quizalofop: 49.9 % AR (30 d)
	pH 9: 0.54 days at 25 °C Met quizalofop: 80.5 % AR (21 d)

EFSA Scientific Report (2008) 204, 1-171 Conclusion on the pesticide peer review of propaquizafop

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

Photolytic degradation of active substance and metabolites above 10 $\%$ ‡	A data gap for photolytic half-lives for propaquizafop and quizalofop was identified in PRAPeR 52 meeting (not essential to finalise the assessment)
	Natural light, 50°N; DT_{50} 32 days (annual averaged DT_{50} calculated with monthly averaged sun intensities)
	Propaquizafop acid (CGA 287422): 19.9-16.4% AR (3-11 d)
	Natural light, 50°N; DT ₅₀ 26 days
	Hydroxy ether (CGA 129674): 15-36.6% AR (7-11 d)
	Estimated DT_{50} at 50°N 32 days annual averaged DT_{50} calculated with monthly averaged sun intensities)
Quantum yield of direct phototransformation in water at $\Sigma > 290$ nm	Propaquizafop: 1.11 x 10 ⁻⁵ mol Einstein ⁻¹ quizalofop (CGA 287422): 1.15 x 10 ⁻⁵ mol Einstein -1
Readily biodegradable ‡ (yes/no)	Not ready biodegradable.

Degradation in water / sediment

Propaquizafo p		PROP: Distribution: max. in water 75.7 % AR after 0 d. Max. sed. 20.03 % AR fter 0 d								
Water / sediment system	pH water phase	pH sed	t. °C	DT ₅₀ -DT ₉₀ whole sys.	St. (r ²)	DT ₅₀ -DT ₉₀ water	St. (r ²)	DT ₅₀ - DT ₉₀ sed	St. (r ²)	Method of calculation
River, (quinoxal. l.) / PROP	7.05		20	< 1		< 1		< 1		
Pond, (quinoxal. l.) / PROP	6.77		20	< 1		< 1		< 1		
Geometric mean/median										

Quizalofop	ET: D	TEF : Distribution: max. in water 94 % AR after 1 d. Max. sed. 53 % AR after 14 d ET : Distribution: max. in water 83 % AR after 7 d. Max. sed. 43 % AR after 28 d PROP : Distribution: max. in water 90.2 % AR after 1 d. Max. sed. 45.4 % AR after 28 d								
Water / sediment system	pH water phase	pH sed	t. °C	DT ₅₀ -DT ₉₀ whole sys.	St. (r ²)	DT ₅₀ -DT ₉₀ water	r ²	DT ₅₀ - DT ₉₀ sed	St. (r ²)	Method of calculation
River, (phenyl- quinoxal. l.) / TEF	8.1	7.3	20	27-88	0.9 70	10–33	0.9 91	*	*	SFO
Pond, (phenyl- quinoxal. l.) / TEF	7.9	7.0	20	34–114	0.9 70	9.9 – 33	0.9 75	*	*	SFO
River, (phenyl. l.) / TEF	7.7	7.3	20	25–84	0.9 08	*	*	*	*	SFO
Pond, (phenyl l.) / TEF	7.6	7.1	20	35-117	0.9 79	*	*	*	*	SFO
Mill Stream Pond /ET	8.3	7.9	10	54-83***	0.9 83	50-62***	0.9 87	61-104***	0.9 92	One comp. model
Iron Hatch Stream /ET	8.3	8.2	10	40-66***	0.9 91	38-53***	0.9 98	47-89***	0.9 65	One comp. model
Geometric mean	l			35		-		-		

* = not available ** = not performed *** = at 20 °C, not normalised in the DAR, dissipation in both experiments were biphasic (both phases individually 1st order) with the first phase being the slow phase and the calculated DT50 were before the inflection point (102 days in the 10 °C study)

TEF = the study presented in the DAR of quizalofop-P-tefuryl

ET = the study presented in the DAR of quizalofop-P-ethyl

PROP = thedata presented in the addendum to the DAR of propaquizatop are not peer reviewed

Note: data from the propaquizafop was excluded because is not peer reviewed

For the metabolites quizalofop, hydroxy-quizalofop, dihydroxy-quinoxaline, hydroxy-quinoxaline, quizalofop-phenol and dihydroxy-quinoxaline degradation rates from the water/sediment study are available in the final addendum to the DAR but are not peer reviewed.

Dihydroxy	PROP: Distribution: max. in water 3.7 % AR after 119 d. Max. sed. 10 % AR after
quinoxaline	56 d

Hydroxy	PROP: Distribution: max. in water 4.1 % AR after 56 d. Max. sed. 11.2 % AR after
propaquizafo	56 d
p acid	

Mineralization and non extractable residues							
Water / sediment system	pH water phase	pH sed	Mineralization x % after n d. (end of the study).	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after n d (end of the study)		
River, (quinoxal. l.) / PROP	7.05		37.5% after 239 d	45.2% after 119 d	40% after 239 d		
Pond, (quinoxal. l.) / PROP	6.77		31.6% after 239 d	46% after 239 d	46% after 239 d		

PEC (surface water) and PEC sediment (Annex IIIA, point 9.2.3)

Parent: Propaquizafop Parameters used in FOCUSsw step 1 and 2	Version control no. of FOCUS calculator: Version 1.1
	Molecular weight (g/mol): 443.9
	Water solubility (mg/L): 0.63 mg/kg
	K _{OC} (L/kg): 2220 (estimated using Briggs equation from log Kow)
	DT_{50} soil (d): 3 days (Lab worst case value, as exact value could not be determined using 1 st order kinetics. DT_{50} and $DT_{90} < 3$ days.
	Degradation rates from the water/sediment study are available in the final addendum to the DAR but are not peer reviewed.
	Crop interception (%): Sugar beet and winter oil seed rape, minimal crop cover selected. For spring

EFSA Scientific Report (2008) 204, 1-171 Conclusion on the pesticide peer review of propaquizafop

	oil seed rape average crop cover selected.
	0 % partitioning to top x cm layer of sediment, entry route as for surface water, pattern of decline reflecting that measured in the sediment/water study
Parameters used in FOCUSsw step 3 (if performed)	Version control no.'s of FOCUS software: SWASH v1.1, MACRO in FOCUS v4.4.2, PRZM in FOCUS v1.5.6, TOXSWA v2.1.1
	Vapour pressure: 4.395 x 10 ⁻¹⁰ Pa (25°C)
	Kom/Koc: 2220 (estimated using Briggs equation from log Kow)
	1/n: 0.9 (default)
Application rate	Crop: Sugar beet
	Crop interception: (adjusted within the model)
	Number of applications: 1
	Interval (d): Not applicable
	Application rate(s): 200 g as/ha
	Application window: Step 1 and 2: March-May Step 3 -14 days from emergence date

Appendix 1 – amalgamated list of endpoints for the active substance and the representative	
formulation	

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
1 Scenario	overall maximum	Actual	TWA	Actual	TWA
Propaquizafop	0 h	18.6744		373.7374	
Sugar beet					

FOCUS STEP 2 Scenario	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	1.8393		23.7309	
Propaquizafop					
Sugar beet					
Southern EU	0 h	2.1381		47.4617	
Propaquizafop					
Sugar beet					

FOCUS STEP	Water	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/k	g)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D3	Ditch	0 h	1.045		0.094	
Propaquizafop						
Sugar beet						

FOCUS STEP	Water	Day after	PEC _{SW} (µg/	L)	PEC _{SED} (µg	$PEC_{SED}(\mu g/kg)$	
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA	
D4 Promo guizo for	Pond	0 h	0.042		0.006		
Propaquizafop Sugar beet							
D4 Propaquizafop	Stream	0 h	0.877		0.036		
Sugar beet							

FOCUS STEP	Water	Day after	PEC _{SW} (µg/	/L)	PEC _{SED} (µ	g/kg)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
R1 Propaquizafop Sugar beet	Pond	0 h	0.042		0.007	
R1 Propaquizafop Sugar beet	Stream	0 h	0.723		0.064	
R3 Propaquizafop Sugar beet	Stream	0 h	1.021		0.110	

Application rate

Crop: Spring oilseed rape Crop interception: (adjusted within the model) Number of applications: 1 Interval (d): not applicable Application rate(s): 200 g as/ha Application window: Step 1 and 2: March-May Step 3 -14 days from emergence date

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
l Scenario	overall maximum	Actual	TWA	Actual	TWA	
Propaquizafop Spring oil seed rape	0 h	18.6744		373.7374		

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA

FOCUS STEP	Day after	PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	1.8393		8.8991	
Propaquizafop	24 h				
Spring oil seed rape	2 d				
	4 d				
	7 d				
	14 d				
	21 d				
	28 d				
	42 d				
Southern EU	0 h	1.8393		17.7982	
Propaquizafop	24 h				
Spring oil seed rape	2 d				
	4 d				
	7 d				
	14 d				
	21 d				
	28 d				
	42 d				

FOCUS STEP	Water	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D1	Ditch	0 h	1.277		0.159	
Propaquizafop Spring oil seed						
rape						

FOCUS STEP	Water	Day after	PEC _{SW} (µg/	(L)	PEC _{SED} (µ	g/kg)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D1	Stream	0 h	1.117		0.137	
Propaquizafop Spring oil seed						
rape						
D3	Ditch	0 h	1.262		0.181	
Propaquizafop						
Spring oil seed rape						
D4	Pond	0 h	0.044		0.006	
Propaquizafop Spring oil seed						
rape						

FOCUS STEP	Water	Day after	PEC _{SW} (µg/	L)	$PEC_{SED}(\mu)$	g/kg)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D4	Stream	0 h	1.047		0.061	
Propaquizafop Spring oil seed						
rape						
D5 Propaquizafop	Pond	0 h	0.044		0.007	
Spring oil seed						
rape						
D5	Stream	0 h	0.990		0.022	
Propaquizafop						
Spring oil seed rape						

FOCUS STEP	Water	Day after	PEC _{SW} (µg/L	<i>.</i>)	PEC _{SED} (µg	g/kg)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
R1	Dand	0 h	0.044		0.002	
R I Propaquizafop	Pond	0 h	0.044		0.008	
Spring oil seed rape						
R1 Propaguizaton	Stream	0 h	0.832		0.073	
Propaquizafop Spring oil seed						
rape						

Application rate

Crop: Winter oilseed rape Crop interception: (adjusted within the model) Number of applications: 1 Interval (d): not applicable

> Application rate(s): 200 g as/ha Application window: Step 1 and 2: March-May Step 3 -14 days from emergence date

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
1 Scenario	overall maximum	Actual	TWA	Actual	TWA
Propaquizafop Winter oil seed rape	0 h	18.6744		373.7374	

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	2.0044		44.4954	
Propaquizafop					
Winter oil seed					
rape					
Southern EU	0 h	1.8393		35.5963	

FOCUS STEP 2 Scenario	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$			
	overall maximum	Actual	TWA	Actual	TWA		
Propaquizafop							
Winter oil seed							
rape							

FOCUS STEP	Water Day after		PECSW (µg/L)		PECSED (µg/kg)	
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D2	Ditch	0 h	1.278		0.174	

Propaquizafop Winter oil seed rape

FOCUS STEP	Water	Day after	PECSW (µ	g/L)	PECSED ((µg/kg)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
	<u>a</u>		1.138		0.155	
D2 Propaquizafop	Stream	0 h	1.156		0.135	
Winter oil seed rape						
lape						
D3 Propaquizafop	Ditch	0 h	1.266		0.120	
Winter oil seed						
rape						
D4	Pond	0 h	0.044		0.005	

EFSA Scientific Report (2008) 204, 1-171 Conclusion on the pesticide peer review of propaquizafop

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

FOCUS STEP	Water		PECSW (µg/L)		PECSED (µg/kg)	
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
Propaquizafop						

Winter oil seed

rape

FOCUS STEP	Water	Day after	PECSW (µg	g/L)	PECSED ((µg/kg)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D4	Stream	0 h	1.092		0.102	
Propaquizafop Winter oil seed						
rape						
D5	Pond	0 h	0.044		0.005	
Propaquizafop	1011					
Winter oil seed rape						
D5 Dronoguizofon	Stream	0 h	1.178		0.120	
Propaquizafop						

FOCUS STEP	Water	Day after	PECSW (µ	g/L)	PECSED ((µg/kg)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
Winter oil seed						
rape						
R1	Pond	0 h	0.044		0.005	
Propaquizafop	1 onu					
Winter oil seed rape						
lupe						
R1	Stream	0 h	0.835		0.064	
Propaquizafop						
Winter oil seed rape						
*						
R3	Stream	0 h	1.167		0.446	
Propaquizafop						

FOCUS STEP	Water body	Day after	PECSW (µg/L)		PECSED (µg/kg)	
3 Scenario		body overall maximum	Actual	TWA	Actual	TWA
Winter oil seed						
rape						

EFSA Scientific Report (2008) 204, 1-171 Conclusion on the pesticide peer review of propaquizafop

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

Metabolite Quizalofop (CGA 287422)	Molecular weight: 344.8
Parameters used in FOCUSsw step 1 and 2	Water solubility (mg/L): 7500
	Soil or water metabolite: Both
	Koc (L/kg): 411.3 mL/g Mean value (n=4)*
	DT ₅₀ soil (d): 27 days Mean of recalculated Lab value (n=11). Values normalised where necessary in accordance with FOCUS)**
	Degradation rates from the water/sediment study presented in the propaquizafop DAR are available in the final addendum but are not peer reviewed.
	From the amalgamated LoEP, the geometric mean DT_{50} water/sediment system is 35 days
	Crop interception (%): Sugar beet and winter oil seed rape, minimal crop cover selected. For spring oil seed rape average crop cover selected.
	Maximum occurrence observed (% molar basis with respect to the parent)
	Soil: 87.9%
	Water: 90.2%
	Sediment: -
Parameters used in FOCUSsw step 3 (if performed)	Vapour pressure: 5.7195 x 10 ⁻⁸ (estimated using MPBPWIN v1.422 (US EPA, 2000)
•	Koc: 411.3 mL/g Mean value (n=4)
	1/n: 0.85 Mean (n=4)
	Metabolite kinetically generated in simulation (yes/no): No
	Formation fraction in soil (k_{dp}/k_f) : Not determined

Application rate	Crop: sugar beet Number of applications: 1 Interval (d): not applicable Application rate(s): 140 g as/ha (adjusted accordingly, assuming the maximum percentage formation of 90.2%, and taking account of the difference in molecular weight between parent) Depth of water body: 30 cm Application window: Step 1 and 2: March-May
	Step 3 -14 days from emergence date
Main routes of entry	Spray drift; runoff

Based on the amalgamated list of endpoints for quizalofop metabolite, it was agreed during the experts' meeting PRAPeR 52 that the following :

*median Koc value of 356 L/kg, and the median 1/n value of 0.81

**median lab normalised soil DT₅₀ of 24.3 days,

should be used for FOCUS modelling.

It was agreed that re-calculations are not required in this case.

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
1 Scenario	overall maximum	Actual	TWA	Actual	TWA
Quizalofop (CGA 287422)	Oh	30.6853		120.9081	
Sugar beet					

FOCUS STEP	Day after overall maximum	PEC _{SW} (µg/L)		PEC _{SED} (µg/kg)	
2 Scenario		Actual	TWA	Actual	TWA
Northern EU	0 h	5.1313		20.1931	
Quizalofop (CGA 287422)					
Sugar beet					
Southern EU	0 h	9.3757		37.3205	
Quizalofop (CGA 287422)					
Sugar beet					

FOCUS STEP	Water	overall	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
3 Scenario	body		Actual	TWA	Actual	TWA
D3	Ditch	0 h	0.733		0.362	
Quizalofop (CGA 287422)						
Sugar beet						

FOCUS STEP	Water body	Day after overall maximum	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/k	g)
3 Scenario			Actual	TWA	Actual	TWA
D4	Pond	0 h	0.0303		0.102	
Quizalofop (CGA 287422)						
Sugar beet						

FOCUS STEP	Water	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg	g/kg)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D4	Stream	0 h	0.616		0.0406	
Quizalofop (CGA 287422)						
Sugar beet						
R1	Pond	0 h	0.106		0.401	
Quizalofop (CGA 287422)						
Sugar beet						
					_	
R1 Ouizalofon	Stream	0 h	1.115	_	0.442	
Quizalofop (CGA 287422)						
Sugar beet						

FOCUS STEP	Water	Water Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
R3 Quizalofop (CGA 287422) Sugar beet	Stream	0 h	1.559		0.986	

Application rate	Crop: Spring oilseed rape
	Number of applications: 1
	Interval (d): not applicable
	Application rate(s): 140 g as/ha (adjusted accordingly, assuming the maximum percentage formation of 90.2%, and taking account of the difference in molecular weight between parent)
	Depth of water body: 30 cm
	Application window: Step 1 and 2: March-May Step 3 -14 days from emergence date
Main routes of entry	Spray drift; runoff

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
l Scenario	overall maximum	Actual	TWA	Actual	TWA
Quizalofop (CGA 287422)	Oh	30.6853		120.9081	
Spring Oilseed rape					

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	2.4785		9.5315	
Quizalofop (CGA 287422)					
Spring Oilseed rape					
Southern EU Quizalofop (CGA 287422)	0 h	4.0702		15.9285	
Spring Oilseed rape					

FOCUS STEP 2 Scenario	Day after overall maximum	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
		Actual	TWA	Actual	TWA

FOCUS STEP	Water	Day after	PEC _{SW} (µg/I	L)	PEC _{SED} (µ	g/kg)
3 Scenario	body	ody overall maximum	Actual	TWA	Actual	TWA
D1 Quizalofop (CGA 287422) Spring Oilseed rape	Ditch	0 h	0.973		2.352	
D1 Quizalofop (CGA 287422) Spring Oilseed rape	Stream	0 h	0.786		0.728	
D3 Quizalofop	Ditch	0 h	0.886		0.438	

FOCUS STEP	Water	Day after	PEC _{SW} (µg/	L)	$PEC_{SED}(\mu)$	g/kg)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
(CGA 287422) Spring Oilseed rape						
D4 Quizalofop (CGA 287422) Spring Oilseed rape	Pond	0 h	0.0310		0.104	
D4 Quizalofop (CGA 287422) Spring Oilseed rape	Stream	0 h	0.735		0.062	

FOCUS STEP	Water	Day after	PEC _{SW} (µg/	L)	PEC _{SED} (µg	g/kg)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D5	Pond	0 h	0.0315		0.115	
Quizalofop (CGA 287422)						
Spring Oilseed rape						
D5	Stream	0 h	0.695		0.0208	
Quizalofop (CGA 287422)						
Spring Oilseed rape						
R1 Quizalofop	Pond	0 h	0.0970		0.384	
(CGA 287422) Spring Oilseed rape						

FOCUS STEP	P Water	Day after	$PEC_{SW}(\mu g/L)$	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA	
R1	Stream	0 h	1.115		0.440		
Quizalofop (CGA 287422) Spring Oilseed							
rape							

Application rate	Crop: Winter oilseed rape Number of applications: 1 Interval (d): not applicable
	Application rate(s): 140 g as/ha (adjusted accordingly, assuming the maximum percentage formation of 90.2%, and taking account of the difference in molecular weight between parent)
	Depth of water body: 30 cm
	Application window: Step 1 and 2: October-February Step 3 -14 days from emergence date
Main routes of entry	Spray drift; runoff

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
l Scenario	overall maximum	Actual	TWA	Actual	TWA
Quizalofop (CGA 287422)	Oh	30.6853		120.9081	
Winter Oilseed rape					

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	8.8452		35.1383	
Quizalofop (CGA 287422)					
Winter Oilseed rape					
Southern EU	0 h	7.2535		28.7224	
Quizalofop (CGA 287422)					
Winter Oilseed rape					

FOCUS STEP Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$		
2 Scenario	cenario overall maximum	Actual	TWA	Actual	TWA

FOCUS STEP	Water	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/k	(g)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D2	Ditch	0 h	0.942		2.049	
Quizalofop (CGA 287422) Winter Oilseed rape						
D2 Quizalofop (CGA 287422) Winter Oilseed rape	Stream	0 h	0.819		1.688	
D3 Quizalofop	Ditch	0 h	0.889		0.581	

FOCUS STEP	Water	Day after	PEC _{SW} (µg/	L)	$PEC_{SED}(\mu)$	g/kg)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
(CGA 287422) Winter Oilseed rape						
D4 Quizalofop (CGA 287422) Winter Oilseed rape	Pond	0 h	0.104		0.598	
D4 Quizalofop (CGA 287422) Winter Oilseed rape	Stream	0 h	0.767		0.304	

FOCUS STEP	Water	Day after	PEC _{SW} (µg/	L)	PEC _{SED} (µ	g/kg)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
D5 Quizalofop (CGA 287422)	Pond	0 h	0.0349		0.190	
Winter Oilseed rape						
D5 Quizalofop	Stream	0 h	0.827		0.200	
(CGA 287422) Winter Oilseed rape						
R1 Quizalofop (CGA 287422) Winter Oilseed	Pond	0 h	0.0339		0.201	
rape						

FOCUS STEP	Water	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/k	g)
3 Scenario	body	overall maximum	Actual	TWA	Actual	TWA
R1 Quizalofop (CGA 287422) Winter Oilseed rape	Stream	0 h	0.681		0.183	
R3 Quizalofop (CGA 287422) Winter Oilseed rape	Stream	0 h	1.962		1.302	

EFSA Scientific Report (2008) 204, 1-171 Conclusion on the pesticide peer review of propaquizafop

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

Metabolite Hydroxy-quizalofop	Molecular weight: 360.8 g/mol
(CGA 294972)	Water solubility (mg/L): 36.3 (estimated using
Parameters used in FOCUSsw step 1 and 2	EPIWIN v3.1, EPA, 2000)
	Soil or water metabolite: Both
	Koc (L/kg): 98 (mean, n=3)*
	DT ₅₀ soil (d): 10 days (Mean lab value normalised in accordance with FOCUS)**
	Degradation rates from the water/sediment study are available in the final addendum to the DAR but are not peer reviewed.
	Crop interception (%):Sugar beet and winter oil seed rape, minimal crop cover selected. For spring oil seed rape average crop cover selected
	Maximum occurrence observed (% molar basis with respect to the parent)
	Soil: 32.6%
	Water: <5%
	Sediment: 11.2%
Parameters used in FOCUSsw step 3 (if performed)	Not applicable
Application rate	Crop: sugar beet
	Number of applications: 1
	Interval (d): not applicable
	Application rate(s): 200 g as/ha
	Depth of water body: 30 cm
	Application window: March-May
Main routes of entry	Spray drift; runoff
•	hydroxy-quizalofon metabolite it was agreed during

Based on the amalgamated list of endpoints for hydroxy-quizalofop metabolite, it was agreed during the experts' meeting PRAPeR 52 that::

*the median Koc value of 141 L/kg,

**the median lab normalised soil DT₅₀ of 15.6 days,

should be used for FOCUS modelling.

It was agreed that re-calculations are not required in this case.

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
1 Scenario	overall maximum	Actual	TWA	Actual	TWA
Hydroxy- quizalofop (CGA 294972) Sugar beet	0h	15.7908		15.3108	

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU Hydroxy-	0 h	2.0438		1.9820	
quizalofop (CGA 294972)					
Sugar beet					
Southern EU	0 h	3.9382		3.8243	
Hydroxy- quizalofop (CGA 294972)					
Sugar beet					

2	Day after overall maximum	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
		Actual	TWA	Actual	TWA

Application rate

Crop: Spring oilseed rape Number of applications: 1 Interval (d): Not applicable Application rate(s): 200 g as/ha Depth of water body: 30 cm Application window: March-May Spray drift; runoff

Main routes of entry

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
1 Scenario	overall maximum	Actual	TWA	Actual	TWA
Hydroxy- quizalofop (CGA 294972)	Oh	15.7908		15.3108	
Spring oilseed rape					

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	0.8598		0.8305	
Hydroxy- quizalofop					
(CGA 294972)					
Spring oilseed rape					
Southern EU	0 h	1.5702		1.5214	
Hydroxy- quizalofop					
(CGA 294972)					
Spring oilseed rape					
Tape					

Application rate	Crop: Winter oilseed rape
	Number of applications: 1
	Interval (d): not applicable
	Application rate(s): 200 g as/ha
	Depth of water body: 30 cm
	Application window: October-February
Main routes of entry	Spray drift; runoff

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
l Scenario	overall maximum	Actual	TWA	Actual	TWA
Hydroxy- quizalofop (CGA 294972) Winter oilseed rape	0h	15.7908		15.3108	

FOCUS STEP	Day after	PEC _{sw} (µg/L)		PEC _{SED} (µg/kg)	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	3.7014		3.5940	
Hydroxy- quizalofop					
(CGA 294972)					
Winter oilseed rape					
Southern EU	0 h	2.9910		2.9031	
Hydroxy- quizalofop					
(CGA 294972)					
Winter oilseed					
rape					

EFSA Scientific Report (2008) 204, 1-171 Conclusion on the pesticide peer review of propaquizafop

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

FOCUS STEP 2 Scenario	Day after overall maximum	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
		Actual	TWA	Actual	TWA

Metabolite Dihydroxy quinoxaline	Molecular weight: 196.6
(CGA 294970)	Water solubility (mg/L): 494 estimated using
Parameters used in FOCUSsw step 1 and 2	EPIWIN v 3.1 (EPA, 2000)
	Soil or water metabolite: Both
	Koc (L/kg): 509.2 (mean, n=3)*
	DT ₅₀ soil (d): 39 days (Lab mean (n=3), after normalisation in accordance with FOCUS)**
	Degradation rates from the water/sediment study are available in the final addendum to the DAR but are not peer reviewed.
	Crop interception (%):Sugar beet and winter oil seed rape, minimal crop cover selected. For spring oil seed rape average crop cover selected
	Maximum occurrence observed (% molar basis with respect to the parent)
	Soil: 13.7
	Water: <5%
	Sediment: 10%
Parameters used in FOCUSsw step 3 (if performed)	Not applicable
Application rate	Crop: sugar beet
	Number of applications: 1
	Interval (d): not applicable
	Application rate(s): 200 g as/ha
	Depth of water body: 30 cm
	Application window: March-May
Main routes of entry	Spray drift; runoff

Based on the amalgamated list of endpoints for dihydroxy-quinoxaline metabolite, it was agreed during the experts' meeting PRAPeR 52 that:

*the median Koc value of 547.7 L/kg,

**the median lab normalised soil DT_{50} of 54.3 days,

should be used for FOCUS modelling.

It was agreed that re-calculations are not required in this case.

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
l Scenario	overall maximum	Actual	TWA	Actual	TWA
Dihydroxy quinoxaline (CGA 294970) Sugar beet	0h	2.4908		12.2683	

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU Dihydroxy quinoxaline	0 h	0.4132		2.0487	
(CGA 294970) Sugar beet					

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Southern EU Dihydroxy	0 h	0.7722		3.8610	
quinoxaline (CGA 294970)					
Sugar beet					

Application rate

Crop: Spring oilseed rape Number of applications: 1 Interval (d): not applicable Application rate(s): 200 g as/ha Depth of water body: 30 cm Application window: March-May

Main routes of entry

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
l Scenario	overall maximum	Actual	TWA	Actual	TWA
Dihydroxy quinoxaline (CGA 294970) Spring oilseed rape	0h	2.4908		12.2683	

FOCUS STEP	Day after	PEC _{sw} (µg/L)	PEC _{SED} (µg/	PEC _{SED} (µg/kg)	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA	
Northern EU Dihydroxy quinoxaline (CGA 294970) Spring oilseed rape	0 h	0.1888		0.9161		
Southern EU Dihydroxy quinoxaline (CGA 294970) Spring oilseed rape	0 h	0.3234		1.5956		

FOCUS STEP 2 Scenario	Day after overall maximum	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
		Actual	TWA	Actual	TWA

Application rate

Crop: Winter oilseed rape Number of applications: 1 Interval (d): not applicable Application rate(s): 200 g as/ha Depth of water body: 30 cm Application window: October-February Spray drift; runoff

Main routes of entry

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
l Scenario	overall maximum	Actual	TWA	Actual	TWA
Dihydroxy quinoxaline (CGA 294970) Winter oilseed rape	0h	2.4908		12.2683	

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	0.7273		3.6344	
Dihydroxy quinoxaline (CGA 294970)					
Winter oilseed rape					
Southern EU	0 h	0.5927		2.9548	
Dihydroxy quinoxaline					
(CGA 294970)					
Winter oilseed					
rape					

EFSA Scientific Report (2008) 204, 1-171 Conclusion on the pesticide peer review of propaquizafop

Metabolite Hydroxy quinoxaline	Molecular weight: 180.6
(CGA 290291) Parameters used in FOCUSsw step 1 and 2	Water solubility (mg/L): 1009 estimated using EPIWIN v 3.1 (EPA, 2000)
	Soil or water metabolite: both
	Koc/Kom (L/kg): 522.4 estimated usingPCKOCWIN v 1.66
	DT ₅₀ soil (d): 41 days (Lab mean (n=3) after normalisation in accordance with FOCUS)
	Degradation rates from the water/sediment study are available in the final addendum to the DAR but are not peer reviewed.
	Crop interception (%):Sugar beet and winter oil seed rape, minimal crop cover selected. For spring oil seed rape average crop cover selected
	Maximum occurrence observed (% molar basis with respect to the parent)
	Soil: 8.8
	Water: - < 5
	Sediment: 6.4
Parameters used in FOCUSsw step 3 (if performed)	Not applicable
Application rate	Crop: sugar beet
	Number of applications: 1
	Interval (d): not applicable
	Application rate(s): 200 g as/ha
	Depth of water body: 30 cm
	Application window: March-May
Main routes of entry	Spray drift; runoff

•	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
verall aximum	Actual	TWA	Actual	TWA
h	1.4548		7.3496	
v 12	erall aximum	erall Actual Actual	erall Actual TWA	erall aximum Actual TWA Actual

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU	0 h	0.2415		1.2237	
Hydroxy quinoxaline					
(CGA 290291)					
Sugar beet					
Southern EU	0 h	0.4519		2.3090	
Hydroxy					
quinoxaline (CGA 290291)					
Sugar beet					

FOCUS STEP 2 Scenario	Day after overall maximum	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
		Actual	TWA	Actual	TWA

Application rate

Crop: Spring oilseed rape Number of applications: 1 Interval (d): not applicable Application rate(s): 200 g as/ha Depth of water body: 30 cm Application window: March-May Spray drift; runoff

Main routes of entry

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/kg)	
1 Scenario	overall maximum	Actual	TWA	Actual	TWA
Hydroxy quinoxaline (CGA 290291)	Oh	1.4548		7.3496	
Spring oilseed rape					

FOCUS STEP	Day after	PEC _{SW} (µg/L)		$PEC_{SED}(\mu g/kg)$	
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU Hydroxy quinoxaline	0 h	0.1100		0.5454	
(CGA 290291)					
Spring oilseed rape					
Southern EU	0 h	0.1889		0.9524	
Hydroxy quinoxaline (CGA 290291)					
Spring oilseed rape					
Tupe					

Crop: Winter oilseed rape Application rate Number of applications: 1 Interval (d): not applicable Application rate(s): 200 g as/ha Depth of water body: 30 cm Application window: October- February Spray drift; runoff

Main routes of entry

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
l Scenario	overall maximum	Actual	TWA	Actual	TWA
Hydroxy quinoxaline (CGA 290291) Winter oilseed rape	0h	1.4548		7.3496	

FOCUS STEP	Day after	$PEC_{SW}(\mu g/L)$		PEC _{SED} (µg/	kg)
2 Scenario	overall maximum	Actual	TWA	Actual	TWA
Northern EU Hydroxy quinoxaline (CGA 290291) Winter oilseed rape	0 h	0.4256		2.1734	
Southern EU Hydroxy quinoxaline (CGA 290291) Winter oilseed rape	0 h	0.3467		1.7664	

EFSA Scientific Report (2008) 204, 1-171 Conclusion on the pesticide peer review of propaquizafop

FOCUS STEP 2 Scenario	Day after overall maximum	$PEC_{SW}(\mu g/L)$		$PEC_{SED}(\mu g/kg)$	
		Actual	TWA	Actual	TWA

EFSA Scientific Report (2008) 204, 1-171 Conclusion on the pesticide peer review of propaquizafop

Appendix 1 – amalgamated list of endpoints for the active substance and the representative formulation

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

Method of calculation and type of study (<i>e.g.</i> modelling, field leaching, lysimeter)	For FOCUS gw modelling, values used – PELMO 3.3.2
	Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.
	Model(s) used: PELMO 3.3.2
	Scenarios (list of names):
	-sugar beet: Chateaudun, Hamburg, Jokioinen, Kremsmunster, Okehampton, Piacenza, Porto, Sevilla, Thiva.
	- spring oilseed rape: Jokioinen, Okehampton, Piacenza,
	- winter oilseed rape: Chateaudun, Hamburg, Kremsmunster, Okehampton, Piacenza, Porto,
	Crops: sugar beet, spring and winter oilseed rape
	Crop interception: sugar beet 20%, oilseed rape (spring) 80%, oilseed rape (winter) 40%.
	Parent: Propaquizafop DT _{50lab} : 3 d (max worse case assumption of 1.8 d normalisation to pF2, 20 °C with Q10 of 2.2). K_{OC} : 2200 ml/g (estimated), $^{1}/_{n}$ = 0.9 (default)
	Metabolite Quizalofop (CGA 287422):
	DT _{50lab} : 27 d Recalculated mean (n=11) normalised to pF2 and 20°C with Q10 of 2.2. K_{OC} : 411.3 ml/g, $1/n = 0.85$ Mean (n=4)
	Metabolite hydroxy propaquizafop acid (CGA 294972):
	DT _{50lab} : 10 d mean (n=3) normalised to pF2. K _{OC} : 98 ml/g, $^{1}/_{n}$ = 1.02 Mean (n=3)
	Metabolite dihydroxy quinoxaline (CGA 294970):
	DT _{50lab} : 39 d mean (n=3) normalised to pF2. K _{OC} : 509.2 ml/g, $^{1}/_{n}$ = 0.63 Mean (n=3)
	Metabolite hydroxy quinoxaline (CGA 290291):
	DT _{50lab} : 41 d mean (n=3) normalised to pF2. K _{OC} : 522.4 ml/g estimated PCKOCWIN Ver 1.66 USEPA, $^{1}/_{n}$ = 0.9 (default)
	Metabolite quizalofop-phenol (CGA 129674):

Taking into consideration that quizalofop-phenol is strongly adsorbed to soil particles (Koc = 2433-7741 mL/g), the experts from MS in PRAPeR 52 agreed that in this case the potential for groundwater contamination of this metabolite is not necessary.

Application rate

Application rate: 200 g/ha.

No. of applications: 1

Time of application (month or season):

Sugar beet: 15th March Spring oilseed rape : 15 March Winter oilseed rape: 30th November:

¹ Based on the amalgamated list of endpoints for QUIZ, QUIZ-OH and CHHQ metabolites, it was agreed during the expert meeting PRAPeR 52 that the following input values should be used in FOCUS modelling:

Quizalofop:

- DT_{50} lab: 24.3 d (median, normalisation to 10 kPa/ pF2 and 20 °C with Q10 of 2.2).

- Koc: 356, 1/n: 081 (median values)

Hydroxy-quizalofop:

- DT₅₀lab: 15.6 d (median, normalisation to 10 kPa/ pF2 and 20 °C with Q10 of 2.2).

- Koc: 141, 1/n: 1.0 (mean value from two soils at environmentally relevant pHs, 6.0 and 7.4) Dihydroxy-quinoxaline:

- DT₅₀lab: 54.3 d (median, normalisation to 10 kPa/ pF2 and 20 °C with Q10 of 2.2).

- Koc: 548, 1/n: 0.70 (the worst case value)

However, based on the available PECgw results and due to the fact that the used input parameters are generally worst cases, the experts agreed that no PECgw recalculations are necessary for the applied for intended uses.

Pe	Scenario	Propaquizafop	Metabolite (µg/L)			
Pelmo / Su		(µg/L)	Quizalofop	Hydroxy- quizalofop	Dihydroxy quinoxaline	Hydroxy quinoxaline
Sugar	Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
beet	Hamburg	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Kremsmunster	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Okehampton	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Piacenza	< 0.001	< 0.001	0.001	< 0.001	< 0.001
	Porto	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Sevilla	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Thiva	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

Pelmo / C	Scenario	$(u \sim T)$	Metabolite (µg/L)			
			Quizalofop	Hydroxy- quizalofop	Dihydroxy quinoxaline	Hydroxy quinoxaline
Oliseed rape	Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
ed ra	Okehampton	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
pe (i	Porto	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
(Spring)						
lg)						

Pelmo / Oliseed rape (Winter)	Scenario	Propaquizafop	Metabolite (µg/L)			
	(µg/L)	Quizalofop	Hydroxy- quizalofop	Dihydroxy quinoxaline	Hydroxy quinoxaline	
	Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Hamburg	< 0.001	< 0.001	0.002	< 0.001	< 0.001
	Kremsmunster	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Okehampton	< 0.001	< 0.001	0.003	< 0.001	< 0.001
	Piacenza	< 0.001	< 0.001	0.007	< 0.001	< 0.001
	Porto	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

$\textbf{PEC}_{(gw)}$ From lysimeter / field studies

No data required

Parent	1 st year	2 nd year	3 rd year
Annual average (µg/L)			

Metabolite X	1 st year	2 nd year	3 rd year
Annual average (µg/L)			

Fate and behaviour in air (Annex IIA, point 7.2.2, Annex III, point 9.3)

Direct photolysis in air ‡	Not studied -	
Quantum yield of direct phototransformation	Propaquizafop: 1.11 x 10 ⁻⁵ Quizalofop (CGA 287422):1.15 x 1 ⁻⁵	
Photochemical oxidative degradation in air ‡	Propaquizafop: DT ₅₀ of 0.6 d Quizalofop (CGA 287422): 0.7 d	
	derived by the Atkinson model (version 1.82). OH (12 or 24 h) concentration assumed = $5 \times 10^5 \text{ cm}^{-3}$	
Volatilisation ‡	from plant surfaces (BBA guideline): insignificant	

losses within hours

from soil surfaces (BBA guideline): <0.1% of the applied does

None

Metabolites

PEC (air)

Method of calculation

Not applicable

PEC_(a)

Maximum concentration

Negligible

Residues requiring further assessment

Environmental occurring metabolite requiring further assessment by other disciplines (toxicology and ecotoxicology). The residue definition of propaquizafop includes both R and S isomers as there is no current method available to separate the isomers. The same applies to quizalofop.

<u>Soil</u>: propaquizafop; quizalofop (CGA 287422); dihydroxy quinoxaline (CGA 294970); hydroxy quizalofop (CGA 294972).

<u>Groundwater:</u> propaquizafop; quizalofop (CGA 287422); dihydroxy quinoxaline (CGA 294970); hydroxy-quizalofop (CGA 294972); quizalofop-phenol (CGA 129674); Hydroxy quinoxaline(CGA 290291).

<u>Surface water:</u> propaquizafop; quizalofop (CGA 287422); (from soil run off and drainage) dihydroxy quinoxaline (CGA 294970); hydroxy-quizalofop (CGA 294972).

<u>Sediment</u>: propaquizafop; dihydroxy quinoxaline (CGA 294970); hydroxy-quizalofop (CGA 294972; quizalofop (CGA 287422). Air: propaquizafop.

Monitoring data, if available (Annex IIA, point 7.4)

Soil (indicate location and type of study)

Surface water (indicate location and type of study)

Ground water (indicate location and type of study)

Air (indicate location and type of study)

*	
No data available	

Points pertinent to the classification and proposed labelling with regard to fate and behaviour data

Candidate for R53

Effects on terrestrial vertebrates (Annex IIA, point 8.1, Annex IIIA, points 10.1 and 10.3)

Species	Test substance	Time scale	Endpoint ¹ (mg/kg bw/day)	Endpoint ¹ (mg/kg feed)
Birds ‡		·	·	·
Bobwhite Quail	a.s.	Acute	LD50>2000 mg a.s./kg bw	not relevant*
Japanese quail	Preparation	Acute (limit test)	LD50 > 2000 mg form/Kg bw	not relevant*
	Metabolite 1	Acute	no data available – not required	
Mallard duck	a.s.	Short-term	LC50>827 ⁺	>6593 mg
Bobwhite quail	a.s.	Long-term	NOEC ≥20.2	≥250 mg
Mammals ‡		·	·	
Mouse	a.s.	Acute	3009 mg a.s./kg bw	not relevant*
	Preparation	Acute	no data available – not required	no data available – not required
	Metabolite 1	Acute	no data available – not required	no data available – not required
Rat (two-generation)	a.s.	Long-term (NOAEL)	15 mg a.s./kg bw/d	Not #

¹ Lowest endpoint in cases of several studies

* Single oral dose, unit "mg/kg feed" not relevant

⁺ corrected according to Evaluation Table, Open point 5.2

Diets were adjusted weekly based on the previous week's body weights, hence recalculation to endpoint in "(mg/kg feed)" not appropriate

Additional higher tier studies ‡

Toxicity/exposure ratios for terrestrial vertebrates (Annex IIIA, points 10.1 and 10.3)

Leafy crops (sugar beet, oilseed rape), 0.2 kg a.s./ha

Indicator species/Category	Time scale	ETE	TER	Annex VI Trigger
Tier 1 (Birds)			·	·
Medium herbivorous	Acute	13.2	>152	10
Small insectivorous	Acute	10.8	>185	10
Medium herbivorous	Short-term	6.1	>131	10
Small insectivorous	Short-term	6.0	>134	10
Medium herbivorous	Long-term	3.2	6.2	5
Small insectivorous	Long-term	6.0	3.3	5
Higher tier refinement (Birds) Open point in t	he Evaluatio	n table	
	Acute	not needed	not needed	10
	Short-term	not needed	not needed	10
Small insectivorous	Long-term	1.362	14.8	5
Tier 1 (Mammals)			·	·
Medium herbivorous	Acute	4.9	614	10
Medium herbivorous	Long-term	1.2	13	5
Higher tier refinement (Mam	mals)		•	
	Acute	not needed	not needed	10
	Long-term	not needed	not needed	5

Risk to birds and mammals from consumption of contaminated drinking water

Indicator species/Category	Time scale	ETE	TER	Annex VI Trigger		
Tier 1 (Birds)						
Small insectivorous	Acute	54	>37	10		
Tier 1 (Mammals)						
Small insectivorous	Acute	3009	94	10		

Risk to birds and mammals from secondary poisoning

Indicator species/Category	Time scale	ETE	TER	Annex VI Trigger
Tier 1 (Birds)				
Earthworms eating	Long-term	0.598	33.8	5
Fish eating	Long-term	7.71	2620	5
Tier 1 (Mammals)	•			
Earthworms eating	Long-term	0.343	43.7	5
Fish eating	Long-term	4.77	314	5

Toxicity data for aquatic species (most sensitive species of each group) (Annex IIA, point 8.2, Annex IIIA, point 10.2)

Group	Test substance	Time-scale	Endpoint	Toxicity
		(Test type)		(mg a.s./L)
Laboratory tests ‡				
Fish				
Mirror carp Cyprinus carpio	Propaquizafop technical	96 hr (flow- through)	Mortality, LC ₅₀	0.19
Rainbow trout Oncorhynchus mykiss	Propaquizafop technical	28 d (ELS) Flow through	Growth NOEC	0.019
Common carp <i>Cyrpinus carpio</i>	Preparation	96 hr (flow- through)	Mortality, LC ₅₀	0.11
	Preparation	28 d (flow- through)	Growth NOEC	No data available – not required
Rainbow trout Oncorhynchus mykiss	Quizalofop	96 hr Static test	Mortality, LC ₅₀	>100 nom ^a
Rainbow trout Oncorhynchus mykiss	Quizalofop	28 d (flow- through)	NOEC	46.2 mm ^b
Rainbow trout Oncorhynchus mykiss	Hydroxy quizalofop	96 hr Static test	Mortality, LC ₅₀	>100 mm ^a
Rainbow trout Oncorhynchus mykiss	Dihydroxy quinoxaline	96 hr Static test	Mortality, LC ₅₀	>11.2 mm ^a
Rainbow trout Oncorhynchus mykiss	Quizalofop phenol	96 hr Static test	Mortality, LC ₅₀	1.3 mm ^a
Rainbow trout Oncorhynchus mykiss	Hydroxy quinoxaline	96 hr Static test	Mortality, LC ₅₀	15.6 mm ^a
Aquatic invertebrates				
Daphnia magna	Propaquizafop technical	48 h (static)	Immobilisation, EC ₅₀	>0.9
Daphnia magna	Propaquizafop technical	21 d (flow- through)	Reproduction, NOEC	0.44
Daphnia magna	Propaquizafop, formulated as a 100g/1 EC	48 h (static)	Immobilisation, EC ₅₀	0.24

Group	Test substance	Time-scale (Test type)	Endpoint	Toxicity (mg a.s./L)
	Preparation	21 d (static)	Reproduction, NOEC	No data available – not required
Daphnia magna	Quizalofop	48 h (static)	Immobilisation, EC ₅₀	57.7 mm ^b
Daphnia magna	Quizalofop	21 d (semistatic)	Reproduction, NOEC	0.82 mm ^b
Daphnia magna	Hydroxy quizalofop	48 h (static)	Immobilisation, EC ₅₀	>100 nom ^a
Daphnia magna	Dihydroxy quinoxaline	48 h (static)	Immobilisation, EC ₅₀	>9.8 mm ^a
Daphnia magna	Quizalofop phenol	48 h (static)	Immobilisation, EC ₅₀	2.8 mm ^a
Daphnia magna	Hydroxy quinoxaline	48 h (static)	Immobilisation, EC ₅₀	>19.2 mm ^a
Sediment dwelling organ	nisms	•		
	a.s.	28 d (static)	NOEC	No data available – not required
Chironomus riparius	Metabolite Quizalofop	28 d (static) Water spiked sys.	NOEC	35.7 nom ^b
Chironomus riparius	Metabolite Quizalofop phenol	28 d (static) Sediment spiked sys.	NOEC	10 nom ^b (mg a.s./kg)
Chironomus riparius	Metabolite Dihydroxy quinoxaline	28 d (static) Sediment spiked sys.	NOEC	> 1.48 mm ^c (mg a.s./kg)
Algae				
Pseudokirchneriella subcapitata	Propaquizafop, technical	72 h (static)	Biomass: 96h E_bC_{50} Growth rate: 96h E_rC_{50}	>2.1 >2.1
Second algae species ¹		72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	Not available Required at MS level ²

Group	Test substance	Time-scale (Test type)	Endpoint	Toxicity (mg a.s./L)
Scenedesmus subspicatus	Preparation	72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	0.27 0.15
Pseudokirchneriella subcapitata	Metabolite Quizalofop	72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	54.5 mm ^b
Pseudokirchneriella subcapitata	Metabolite Hydroxy quizalofop	72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	>100 nom ^a >100 nom
Scenedesmus subspicatus	Metabolite Dihydroxy quinoxaline	72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	>8.6 mm ^a >8.6 mm
Scenedesmus subspicatus	Metabolite Quizalofop phenol	72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	4.5 nom ^a Growth rate not reported
Scenedesmus subspicatus	Metabolite Hydroxy quinoxaline	72 h (static)	Biomass: E_bC_{50} Growth rate: E_rC_{50}	>18.8 mm ^a >18.8 mm
Higher plant				
Lemna gibba	Propaquizafop technical	7 d test (static)	Fronds, EC ₅₀	>1.4
Lemna gibba	Preparation	14 d (static)	Fronds, EC ₅₀	Not available Required at MS level ²
Lemna gibba	Metabolite Quizalofop	14 d (static)	Fronds, EC ₅₀ NOEC	28 nom ^c 3.2 nom
Glyceria fluitans	Metabolite Quizalofop	14 d (static)	Fronds, EC ₅₀ NOEC	> 0.190 ^a 0.094

Microcosm or mesocosm tests

Not required. A low level of risk to aquatic organisms expected following the recommended use of products containing propaquizafop, based on the current GAP.

1) A test on a second algal species was a level 4 requirement (open point 5.5, Evaluation Table)

2) A test on higher plant with the formulation on MS level was a level 4 requirement (open point 5.5, Evaluation Table)

a) Endpoint from propaquizafop DAR

b) Endpoint from quizalofop-P-ethyl DAR

c) Endpoint from quizalofop-P-tefuryl DAR

Toxicity/exposure ratios for the most sensitive aquatic organisms (Annex IIIA, point 10.2)

FOCUS Step1

200 g a.s.-ha (all uses)

Test substance ¹	Organism	Toxicity endpoint (mg/L) ¹	Time scale	PEC _i (µg/L)	TER	Annex VI Trigger
Product	Fish	0.11	Acute	18.67	5.9	100
a.s.	Fish	0.019	Chronic	18.67	1	10
Product	Aquatic invertebrates	0.24	Acute	18.67	12.9	100
a.s.	Aquatic invertebrates	0.44	Chronic	18.67	23.6	10
Product	Algae		Chronic	18.67		10
a.s.	Higher plants	>1.4	Chronic	18.67	>75	10
Quizalofop	Fish	>100	Acute	30.69	>3258	100
Quizalofop	Fish	46.2	Chronic	30.69	1505 ²	10
Quizalofop	Aquatic invertebrates	57.7	Acute	30.69	1880	100
Quizalofop	Aquatic invertebrates	0.82	Chronic	30.69	27 ²	10
Quizalofop	Algae	54.5	Acute	30.69	1776	10
Quizalofop	Higher plants (G. <i>fluitans</i>)	0.094	Chronic	30.69	3.1	10
Quizalofop	Higher plants (Lemna)	3.2	Chronic	30.69	104	10
Quizalofop	Sediment dwellers	35.7	Chronic	30.69	1163	10
Hydroxy quizalofop	Fish	>100	Acute	15.79	>6333	100
Hydroxy quizalofop	Aquatic invertebrates	>100	Acute	15.79	>6333	100
Hydroxy quizalofop	Algae	>100	Acute	15.79	>6333	10
Dihydroxy quinoxaline	Fish	>11.2	Acute	2.49	>4498	100

Test substance ¹	Organism	Toxicity endpoint (mg/L) ¹	Time scale	PEC _i (µg/L)	TER	Annex VI Trigger
Dihydroxy quinoxaline	Aquatic invertebrates	>9.8	Acute	2.49	>3936	100
Dihydroxy quinoxaline	Algae	>8.6	Acute	2.49	>3454	10
Dihydroxy quinoxaline	Sediment dwellers	>1.48 ³ mg/kg	Chronic	12.3 mg/kg	120	10
Quizalofop phenol	Considered minor r	netabolite (se	ee definitio	n of the r	esidue abc	ove)
Hydroxy quinoxaline	Fish	15.6	Acute	1.45	10759	100
Hydroxy quinoxaline	Aquatic invertebrates	>19.2	Acute	1.45	>13241	100
Hydroxy quinoxaline	Algae	>18.8	Acute	1.45	>12966	10

¹ Lowest endpoint (active substance or preparation)

Values in bold are lower than Annex VI 91/414/EEC triggers (10 or 100), indicating that further assessment is required

² TER calculated using PEC_i

³ Sediment spiked study

FOCUS Step 2

Sugar beet, 200 g a.s./ha, BBCH 12 -39, Northern and Southern Europe

Test substance ¹	N/S	Organism	Toxicity endpoint (mg/L) ¹	Time scale	PEC max (µg/L)	TER	Annex VI Trigger
Product	Ν	Fish	0.11	Acute	1.84	59.8	100
a.s.	Ν	Fish	0.019	Chronic	1.84	10.3	10
Product	Ν	Daphnia	0.24	Acute	1.84	130.4	100
a.s.	Ν	Daphnia	0.44	Chronic	1.84	239.1	10
Product	Ν	Algae		Chronic	1.84		10
a.s.	Ν	Higher plants	>1.4	Chronic	1.84	>761	10
Quizalofop	N	Higher plants	0.094	Chronic	5.13	18	10
Product	S	Fish	0.11	Acute	2.14	51.4	100
a.s.	S	Fish	0.019	Chronic	2.14	8.9	10

Test substance ¹	N/S	Organism	Toxicity endpoint (mg/L) ¹	Time scale	PEC max (µg/L)	TER	Annex VI Trigger
Product	S	Daphnia	0.24	Acute	2.14	112.1	100
a.s.	S	Daphnia	0.44	Chronic	2.14	205.6	10
Product	S	Algae		Chronic	2.14		10
a.s.	S	Higher plants	>1.4	Chronic	2.14	>654	10
Quizalofop	S	Higher plants	0.094	Chronic	9.38	10	10

¹ Lowest endpoint (active substance or preparation)

Values in bold are lower than Annex VI 91/414/EEC triggers (10 or 100), indicating that further assessment is required

0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	/1 - DDCUI 1 - 20	$\mathbf{M}_{\mathbf{r}}$ with the second of $\mathbf{G}_{\mathbf{r}}$ and $\mathbf{L}_{\mathbf{r}}$ and $\mathbf{E}_{\mathbf{r}}$
Spring offseed rape (spring) 200 g	as/na BBCH / 1-39	Northern and Sollinern Ellrope
Spring oilseed rape (spring), 200 g	a.5.7 m a, DD O m D I D I D I D I D D I D D I D D I D D I D D I D	, iter in and beautern Europe

Test substance ¹	N/S	Organism	Toxicity endpoint (mg/L) ¹	Time scale	PEC max (µg/L)	TER	Annex VI Trigger
Product	N	Fish	0.11	Acute	1.84	59.8	100
a.s.	Ν	Fish	0.019	Chronic	1.84	10.3	10
Product	Ν	Daphnia	0.24	Acute	1.84	130.4	100
a.s.	Ν	Daphnia	0.44	Chronic	1.84	239.1	10
Product	Ν	Algae		Chronic	1.84		10
a.s.	Ν	Higher plants	>1.4	Chronic	1.84	>761	10
Quizalofop	Ν	Higher plants	0.094	Chronic	2.48	38	10
Product	S	Fish	0.11	Acute	1.84	59.8	100
a.s.	S	Fish	0.019	Chronic	1.84	10.3	10
Product	S	Daphnia	0.24	Acute	1.84	130.4	100
a.s.	S	Daphnia	0.44	Chronic	1.84	239.1	10
Product	S	Algae		Chronic	1.84		10
a.s.	S	Higher plants	>1.4	Chronic	1.84	>761	10
Quizalofop	S	Higher plants	0.094	Chronic	4.07	23	10

¹ Lowest endpoint (active substance or preparation)

Values in bold are lower than Annex VI 91/414/EEC triggers (10 or 100), indicating that further assessment is required

Winter oilseed rape (autumn), 200 g a.s./ha, BBCH 13 -29, Northern and Southern Europe

Test substance ¹	N/S	Organism	Toxicity endpoint (mg/L) ¹	Time scale	PEC max (µg/L)	TER	Annex VI Trigger
Product	Ν	Fish	0.11	Acute	2.00	55	100
a.s.	Ν	Fish	0.019	Chronic	2.00	9.5	10
Product	Ν	Daphnia	0.24	Acute	2.00	120	100
a.s.	Ν	Daphnia	0.44	Chronic	2.00	220	10
Product	Ν	Algae		Chronic	2.00		10
a.s.	Ν	Higher plants	>1.4	Chronic	2.00	>700	10
Quizalofop	Ν	Higher plants	0.094	Chronic	8.85	11	10
Product	S	Fish	0.11	Acute	1.84	59.8	100
a.s.	S	Fish	0.019	Chronic	1.84	10.3	10
Product	S	Daphnia	0.24	Acute	1.84	130.4	100
a.s.	S	Daphnia	0.44	Chronic	1.84	239.1	10
Product	S	Algae		Chronic	1.84		10
a.s.	S	Higher plants	>1.4	Chronic	1.84	>761	10
Quizalofop	S	Higher plants	0.094	Chronic	7.25	13	10

¹ Lowest endpoint (active substance or preparation)

Values in bold are lower than Annex VI 91/414/EEC triggers (10 or 100), indicating that further assessment is required

Refined aquatic risk assessment using higher tier FOCUS modelling.

FOCUS Step 3 (Propaquizafop)

Test substance ¹	Scenario	Water body type	Test organism	Time scale	Toxicity endpoint (mg a.s./L) ¹	PEC max (µg a.s./L)	TER	Annex VI trigger
Formulation	D3	Ditch	Fish	Acute	0.11	1.045	105	100
a.s.	D3	Ditch	Fish (ELS)	Chronic	0.019	1.045	18	10
Formulation	D4	Pond	Fish	Acute	0.11	0.042	2619	100
a.s.	D4	Pond	Fish (ELS)	Chronic	0.019	0.042	452	10
Formulation	D4	Stream	Fish	Acute	0.11	0.877	125	100
a.s.	D4	Stream	Fish (ELS)	Chronic	0.019	0.877	22	10
Formulation	R1	Pond	Fish	Acute	0.11	0.042	2619	100
a.s.	R1	Pond	Fish (ELS)	Chronic	0.019	0.042	452	10
Formulation	R1	Stream	Fish	Acute	0.11	0.723	152	100
a.s.	R1	Stream	Fish (ELS)	Chronic	0.019	0.723	26	10
Formulation	R3	Stream	Fish	Acute	0.11	1.021	108	100
a.s.	R3	Stream	Fish (ELS)	Chronic	0.019	1.021	19	10

Crop: Sugar beet, 0.2 kg a.s./ha, BBCH 12 -39

¹ Lowest endpoint (active substance or preparation)

Values in bold are lower than Annex VI 91/414/EEC triggers (10 or 100), indicating that further assessment is required

Crop: Spring oilseed rape, 0.2 kg a.s./ha, BBCH 21 -39

Test substance ¹	Scenario	Water body type	Test organism	Time scale	Toxicity endpoint (mg a.s./L) ¹	PEC max	TER	Annex VI trigger
Formulation	D1	Ditch	Fish	Acute	0.11	a.s./L) 1.277	86	100
Formulation	DI	Ditti	1,1211	Acute	0.11	1.2//	00	100
a.s.	D1	Ditch	Fish (ELS)	Chronic	0.019	1.277	15	10
Formulation	D1	Stream	Fish	Acute	0.11	1.117	98	100
a.s.	D1	Stream	Fish (ELS)	Chronic	0.019	1.117	17	10
Formulation	D3	Ditch	Fish	Acute	0.11	1.262	87	100
a.s.	D3	Ditch	Fish (ELS)	Chronic	0.019	1.262	15	10

Test substance ¹	Scenario	Water body type	Test organism	Time scale	Toxicity endpoint (mg a.s./L) ¹	PEC max (µg a.s./L)	TER	Annex VI trigger
Formulation	D4	Pond	Fish	Acute	0.11	0.044	2500	100
a.s.	D4	Pond	Fish (ELS)	Chronic	0.019	0.044	432	10
Formulation	D4	Stream	Fish	Acute	0.11	1.047	105	100
a.s.	D4	Stream	Fish (ELS)	Chronic	0.019	1.047	18	10
Formulation	D5	Pond	Fish	Acute	0.11	0.044	2500	100
a.s.	D5	Pond	Fish (ELS)	Chronic	0.019	0.044	432	10
Formulation	D5	Stream	Fish	Acute	0.11	0.99	111	100
a.s.	D5	Stream	Fish (ELS)	Chronic	0.019	0.99	19	10
Formulation	R1	Pond	Fish	Acute	0.11	0.044	2500	100
a.s.	R1	Pond	Fish (ELS)	Chronic	0.019	0.044	432	10
Formulation	R1	Stream	Fish	Acute	0.11	0.832	132	100
a.s.	R1	Stream	Fish (ELS)	Chronic	0.019	0.832	23	10

¹ Lowest endpoint (active substance or preparation)

Values in bold are lower than Annex VI 91/414/EEC triggers (10 or 100), indicating that further assessment is required

Crop: Winter oilseed rape, 0.2 kg a.s./ha, BBCH 13 -29

Test substance ¹	Scenario	Water body type	Test organism	Time scale	Toxicity endpoint (mg a.s./L) ¹	PEC max (µg a.s./L)	TER	Annex VI trigger
Formulation	D2	Ditch	Fish	Acute	0.11	1.278	86	100
a.s.	D2	Ditch	Fish (ELS)	Chronic	0.019	1.278	15	10
Formulation	D2	Stream	Fish	Acute	0.11	1.138	97	100
a.s.	D2	Stream	Fish (ELS)	Chronic	0.019	1.138	17	10
Formulation	D3	Ditch	Fish	Acute	0.11	1.266	87	100
a.s.	D3	Ditch	Fish (ELS)	Chronic	0.019	1.266	15	10
Formulation	D4	Pond	Fish	Acute	0.11	0.044	2500	100
a.s.	D4	Pond	Fish (ELS)	Chronic	0.019	0.044	432	10

Test substance ¹	Scenario	Water body type	Test organism	Time scale	Toxicity endpoint (mg a.s./L) ¹	PEC max (µg a.s./L)	TER	Annex VI trigger
Formulation	D4	Stream	Fish	Acute	0.11	1.092	101	100
a.s.	D4	Stream	Fish (ELS)	Chronic	0.019	1.092	17	10
Formulation	D5	Pond	Fish	Acute	0.11	0.044	2500	100
a.s.	D5	Pond	Fish (ELS)	Chronic	0.019	0.044	432	10
Formulation	D5	Stream	Fish	Acute	0.11	1.178	93	100
a.s.	D5	Stream	Fish (ELS)	Chronic	0.019	1.178	16	10
Formulation	R1	Pond	Fish	Acute	0.11	0.044	2500	100
a.s.	R1	Pond	Fish (ELS)	Chronic	0.019	0.044	432	10
Formulation	R1	Stream	Fish	Acute	0.11	0.835	132	100
a.s.	R1	Stream	Fish (ELS)	Chronic	0.019	0.835	23	10
Formulation	R3	Stream	Fish	Acute	0.11	1.167	94	100
a.s.	R3	Stream	Fish (ELS)	Chronic	0.019	1.167	16	10

¹ Lowest endpoint (active substance or preparation)

Values in bold are lower than Annex VI 91/414/EEC triggers (10 or 100), indicating that further assessment is required

Refined aquatic risk assessment using higher tier FOCUS modelling.

FOCUS Step 3: Metabolite Quizalofop (CGA 287422,)

Test substance ¹	Scenario	Water body type	Test organism	Time scale	Toxicity endpoint (mg/L) ¹	PECmax (µg/L)	TER	Annex VI trigger
Quizalofop	D3	Ditch	Higher plants	Chronic	0.094	0.733	128	10
Quizalofop	D4	Pond	Higher plants	Chronic	0.094	0.0303	3102	10
Quizalofop	D4	Stream	Higher plants	Chronic	0.094	0.616	153	10
Quizalofop	R1	Pond	Higher plants	Chronic	0.094	0.106	887	10
Quizalofop	R1	Stream	Higher plants	Chronic	0.094	1.115	84	10
Quizalofop	R3	Stream	Higher plants	Chronic	0.094	1.559	60	10

Crop: Sugar beet, 0.2 kg a.s./ha, BBCH 12 -39

Crop: Spring oilseed rape, 0.2 kg a.s./ha, BBCH 21 -39

Test substance ¹	Scenario	Water body type	Test organism	Time scale	Toxicity endpoint (mg/L) ¹	PECmax (µg/L)	TER	Annex VI trigger
Quizalofop	D1	Ditch	Higher plants	Chronic	0.094	0.973	97	10
Quizalofop	D1	Stream	Higher plants	Chronic	0.094	0.786	120	10
Quizalofop	D3	Ditch	Higher plants	Chronic	0.094	0.886	106	10
Quizalofop	D4	Pond	Higher plants	Chronic	0.094	0.0310	3032	10
Quizalofop	D4	Stream	Higher plants	Chronic	0.094	0.735	128	10
Quizalofop	D5	Pond	Higher plants	Chronic	0.094	0.315	298	10
Quizalofop	D5	Stream	Higher plants	Chronic	0.094	0.695	135	10
Quizalofop	R1	Pond	Higher	Chronic	0.094	0.097	969	10

Test substance ¹	Scenario	Water body type	Test organism	Time scale	Toxicity endpoint (mg/L) ¹	PECmax (µg/L)	TER	Annex VI trigger
			plants					
Quizalofop	R1	Stream	Higher plants	Chronic	0.094	1.115	84	10

Crop: Winter Oilseed rape 0.2 kg a.s./ha, BBCH 13 -29

Test substance ¹	Scenario	Water body type	Test organism	Time scale	Toxicity endpoint (mg/L) ¹	PECmax (µg/L)	TER	Annex VI trigger
Quizalofop	D2	Ditch	Higher plants	Chronic	0.094	0.92	102	10
Quizalofop	D2	Stream	Higher plants	Chronic	0.094	0.819	115	10
Quizalofop	D3	Ditch	Higher plants	Chronic	0.094	0.889	106	10
Quizalofop	D4	Pond	Higher plants	Chronic	0.094	0.104	904	10
Quizalofop	D4	Stream	Higher plants	Chronic	0.094	0.767	123	10
Quizalofop	D5	Pond	Higher plants	Chronic	0.094	0.0349	2693	10
Quizalofop	D5	Stream	Higher plants	Chronic	0.094	0.827	114	10
Quizalofop	R1	Pond	Higher plants	Chronic	0.094	0.0339	2773	10
Quizalofop	R1	Stream	Higher plants	Chronic	0.094	0.681	138	10
Quizalofop	R3	Stream	Higher plants	Chronic	0.094	1.962	48	10

¹ Lowest endpoint (active substance or preparation)

FOCUS Step 4 (Not needed)

Crop and application rate -

Scenario	Water body type	Test organism	Time scale	Toxicity endpoint	Buffer zone distance	PEC	TER	Annex VI trigger

Bioconcentration				
	Active substance	Metab. 1	Metab. 2	Metab. 3
logP _{O/W}	4.78 ± 0.07 at 25°C			
Bioconcentration factor (BCF) ‡	64, 1243 and 583 (muscle, viscera and whole fish) *			
Annex VI Trigger for the bioconcentration factor	100			
Clearance time (days) (CT_{50})	33 hours (muscle); 2.6 hours (whole fish)			
(CT ₉₀)	Not reported			
Level and nature of residues (%) in organisms after the 14 day depuration phase	< 10%			

* based on total ¹⁴C

Effects on honeybees (Annex IIA, point 8.3.1, Annex IIIA, point 10.4)

Test substance	Acute oral toxicity (LD ₅₀ µg/bee)	Acute contact toxicity (LD ₅₀ µg/bee)
Propaquizafop ‡	>20	>200
Preparation 100 g/L EC	>189 µg product/bee; (approximately >18.9 µg a.s./bee).	>189 μg product/bee; (approximately >18.9 μg a.s./bee).
Metabolite	No data available – not required	No data available – not required
Field or semi-field tests		
No data available – not required		

Hazard quotients for honey bees (Annex IIIA, point 10.4)

Application rate: 200g a.s./ha (all uses)

Test substance	Route	Hazard quotient	Annex VI
			Trigger
a.s.	Contact	<1	50
a.s.	oral	<10	50
Preparation	Contact	<10.6	50
Preparation	oral	<10.6	50

Effects on other arthropod species (Annex IIA, point 8.3.2, Annex IIIA, point 10.5)

Species	Test	Endpoint	Effect
	Substance		(LR ₅₀ g a.s./ha)
Typhlodromus pyri ‡	Propaquizafop (100 g/l EC formulation)	Mortality	>8 (4% mortality at exposure equivalent to 4% spray-drift)
Typhlodromus pyri ‡	Propaquizafop (100 g/l EC formulation)	Mortality	200
Aphidius rhopalosiphi ‡	Propaquizafop (100 g/l EC formulation)	Mortality	< 150 (100% mortality)

Laboratory tests with standard sensitive species

Application rate: 200g a.s./ha (all uses)

Test substance	Species	Effect (LR ₅₀ g a.s./ha)	HQ in-field	HQ off-field	Trigger
100 g/l EC formulation	Typhlodromus pyri	200	1	0.028	2
100 g/l EC formulation	Aphidius rhopalosiphi	< 150	Not determined. (>2 assumed)	Not determined.	2

drift rate calcualated at 1m distance

Further laboratory and extended laboratory studies ‡

Species	Life stage	Test substance, substrate and duration	Dose (ga.s./ha)	Endpoint	% effect	Trigger value
Chrysoperla carnea	Adults	Propaquizafop (100 g/l EC formulation) Glass plate test 3 weeks	200	mortality & reproductio n	Corrected mortality: 12 Reduction in reproductiv e capacity: 0	50 %
Coccinella septempunctata	Adults	Propaquizafop (100 g/l EC formulation) Glass plate test 3 weeks	200	mortality & reproductio n	Corrected mortality: 23 Reduction in reproductiv e capacity: 6.1	50 %
Poecilus cupreus	Adults	Propaquizafop (100 g/l EC formulation) Sand 14 days	200	Mortality and feeding	Corrected mortality: 3% Reduction in feeding rate: 19%	50 %
Aleochara bilineata	Adults	Propaquizafop (100 g/l EC formulation) Sand 29 days	200	Reproducti on	Reduction in reproductiv e capacity: 17%	50 %
Typhlodromus pyri	Proto- nymph s	Propaquizafop (100 g/l EC formulation) Bean leaves 7 days	200	Mortality and reproductio n	Corrected mortality: 3.2% Reduction in reproductiv e capacity: 15%	50%

Species	Life stage	Test substance, substrate and duration	Dose (ga.s./ha)	Endpoint	% effect	Trigger value
Aphidius rhopalosiphi	Adults	Propaquizafop (100 g/l EC formulation) Barley Seedlings 14 days	150	Mortality & reproductio n	Corrected mortality: 6.7 Reduction in reproductiv e capacity: 59	50%
Aphidius rhopalosiphi	Adults	Propaquizafop (100 g/l EC formulation) Barley seedlings 14 days	28	Mortality & reproductio n	Corrected mortality: 8 Reduction in reproductio n: 34	50%
			200	Mortality & reproductio n	Corrected mortality: 0 Reduction in reproductio n: 66	50%

Field or semi-field tests

No data available – not required

Effects on earthworms, other soil macro-organisms and soil micro-organisms (Annex IIA points 8.4 and 8.5. Annex IIIA, points, 10.6 and 10.7)

Test organism	Test substance	Time scale	Endpoint			
Earthworms	Earthworms					
Eisenia foetida	Propaquizafop technical ‡	Acute 14 days	14 day LC ₅₀ >1000 mg a.s./kg soil (corrected to >500 mg a.s./kg soil)			
Eisenia foetida	a.s. ‡	Chronic 8 weeks	No data available – not required			
Eisenia foetida	Propaquizafop 100g/l formulation	Acute	14 day LC ₅₀ : 54.6 mg a.s./kg soil (corrected to 27 mg a.s./kg soil)			

Test organism	Test substance	Time scale	Endpoint
Eisenia foetida	Propaquizafop 100g/l formulation)	Chronic (28 days)	3.9 mg a.s./kg soil (corrected to 1.95 mg a.s./kg soil).
Eisenia foetida	Quizalofop	Acute	14 day LC ₅₀ : 948 mg/kg dw soil (corrected to 474 mg a.s./kg soil
Eisenia foetida	Quizalofop	Chronic	NOEC > 50 mg/kg dw soil
Eisenia foetida	Dihydroxy quinoxaline (CGA 294970)	Acute	14 day LC ₅₀ : >1000 mg/kg soil (corrected to >500 mg a.s./kg soil)
Eisenia foetida	Hydroxy quizalofop (CGA 294972)	Acute	14 day LC ₅₀ : >1000 mg/kg soil (corrected to >500 mg a.s./kg soil)
Other soil macro-org	ganisms		
Soil mite	a.s. ‡	No data available - not required	
	Preparation	No data available - not required	
	Metabolite	No data available - not required	
Collembola			
	a.s. ‡	No data available - not required	
Folsomia candida	Propaquizafop 100g/l formulation	28 day	NOEC: 5.4 mg a.s./kg soil: (corrected to 2.7 mg a.s./kg soil)
	Metabolite	No data available -	Assumed to be 10 times more toxic than parent compound
Soil micro-organism	S		
Nitrogen mineralisation	Propaquizafop technical ‡	28 days	Deviation from the control <25% after 28 days incubation up to 1.5 Kg/ha (equivalent to 2.0 mg a.s./Kg soil).

Test organism	Test substance	Time scale	Endpoint
	Propaquizafop technical ‡	56 days	Deviation from the control <25% after 56 days incubation at 0.750 Kg/ha (equivalent to 1.0 mg/ kg dry soil)
	Propaquizafop (100 g/l EC formulation)	90 days	Deviation from the control <25% after 90 days incubation at 1.25 Kg/ha (equivalent to 1.7 mg a.s./Kg soil).
	Metabolite Dihydroxy quinoxaline (CGA 294970)	28 days	Deviation from the control <25% after 28 days incubation at 0.53 mg/kg dry soil
Carbon mineralisation	Propaquizafop technical ‡	28 days	Deviation from the control <25% after 28 days incubation up to 1.5 Kg/ha (equivalent to 2.0 mg a.s./Kg soil).
	Metabolite	No data available – not required	
Field studies	•	· ·	
No data available – not	required		

Toxicity/exposure ratios for soil organisms

Application rate: 200g a.s./ha (all uses)

Test organism	Test substance	Time scale	Soil PEC (max)	TER	Trigger
Earthworms					
Eisenia foetida	Propaquizafop technical	Acute	0.13 mg/ kg soil	>3486	10
Eisenia foetida	a.s. ‡	Chronic	0.13 mg/ kg soil	not calculable	5
Eisenia foetida	Formulated propaquizafop (100 g a.s./L)	Acute	0.13 mg kg soil	212	10
Eisenia foetida	Preparation	Chronic	0.13 mg kg soil	15	5

Test organism	Test substance	Time scale	Soil PEC (max)	TER	Trigger
Eisenia foetida	Metabolite Quizalofop (287422)	Acute	0.09 mg/ kg soil	5266	10
Eisenia foetida	Metabolite Quizalofop (287422)	Chronic	0.09 mg/ kg soil	278	
Eisenia foetida	Dihydroxy quinoxaline (CGA 294970)	Acute	0.008 mg/ kg soil	>62500	10
Eisenia foetida	Hydroxy quizalofop (CGA 294972)	Acute	0.04 mg/ kg soil	>12500	10
Eisenia foetida	Hydroxy quinoxaline (CGA 290291)	Acute	0.005 mg/ kg soil	>10000*	10
* Value calculated as	ssuming the metaboli	te is 10 times more	toxic than p	arent compo	und
Other soil macro-or	rganisms				
Collembola	a.s. ‡			Not calculable	
	Preparation	Chronic	0.13 mg kg soil	21	5
	Quizalofop (CGA 287422)	Chronic	0.09 mg kg soil	6.0*	5
	Dihydroxy quinoxaline (CGA 294970)	Chronic	0.008 mg kg soil	34*	5
	Hydroxy quizalofop (CGA 294972)	Chronic	0.04 mg kg soil	6.8*	5
	Hydroxy quinoxaline CGA 290291	Chronic	0.005 mg kg soil	54*	5

*TER were calculated assuming that the metabolites ares 10 times more toxic than parent compound. The corrected NOEC_cvalue was used to calculate the TERs with the exception of the Quizalofop (CGA 287422) where the uncorrected NOEC was used as the $\log K_{ow}$ is 1.51.

Effects on non target plants (Annex IIA, point 8.6, Annex IIIA, point 10.8)

Preliminary screening data

Not required for herbicides as ER_{50} tests should be provided

Laboratory dose response tests

Most sensitive species	Test substance	ER ₅₀ (g a.s./ha) vegetative vigour	ER ₅₀ (g/ha) emergence/survival	Exposure (g/ha) ²	TER	Trigger
Pre emergent appl	lication			1		1
Lettuce	Preparation Agil 100 EC	>400	>400	400	>72	
Oilseed rape	Preparation Agil 100 EC	>400	>400	400	>72	
Carrot	Preparation Agil 100 EC	>400	>400	5.54	>72	5
Pea	Preparation Agil 100 EC	>400	>400	5.54	>72	5
Oat	Preparation Agil 100 EC	>400	>400	5.54	>72	5
Onion	Preparation Agil 100 EC	>400	>400	5.54	>72	5
Post-emergent app	olication	·				·
Oat ³	Preparation Agil 100 EC	26.6	34.4	5.54	4.8	5
Oat	Preparation Agil 100 EC	26.6	34.4	1.144	23	5

² Exposure calculated using spray drift value of 2.77% (according to Rautmann *et al.* (2001).

³most sensitive species

⁴ Based on a no-spry buffer zone of 5 m.

Additional studies (e.g. semi-field or field studies)

Effects on biological methods for sewage treatment (Annex IIA 8.7)

Test type/organism	Endpoint
Activated sludge	EC ₅₀ >100 mg/l
Pseudomonas sp	no data available – not required

Ecotoxicologically relevant compounds (consider parent and all relevant metabolites requiring further assessment from the fate section)

Compartment	
soil	Propaquizafop.
water	Propaquizafop.
sediment	
groundwater	Propaquizafop.

Classification and proposed labelling with regard to ecotoxicological data (Annex IIA, point 10 and Annex IIIA, point 12.3)

RMS/peer review proposal

Active substance

RMS/peer review proposal

Preparation

Appendix 2 – abbreviations

APPENDIX 2 – ABBREVIATIONS

$^{\circ}C$ degree Celsius (centigrade) μ mmicrogram μ mmicrometer (micron)a.s.active substanceADIacceptable daily intakeAFassessment factorAOELacceptable operator exposure levelARapplied radioactivityARRDacute reference doseAVavoidance factorBCFbioconcentration factorbwbody weightCASChemical Abstract ServiceCIconfidence intervalCPACCollaborative International Pesticide Analytical Council LimitedCLconfidence intervalDAAdays after applicationDARdraft assessment reportDATdays after treatmentDFRdislogeable foliar residueDMdry matterDTs0period required for 50 percent disappearance (define method of estimation)DTs0period required for 90 percent disappearance (define method of estimation)dwdry weightENCS0effective concentrationECS0effective concentrationECS1European Economic CommunityELINKCSEuropean Inventory of Existing Commercial Chemical SubstancesEMDIestimated maximum daily intakeRAs0engrence rate/effective rate, medianErC2European Inventory of Persitie rate, medianErC3effective concentration (forwh rate)EUNECSEuropean List of New Chemical SubstancesELINKCSEuropean UnionFRAFood and Agricultur	3	decadic molar extinction coefficient
µgmicrogramµmmicrometer (micron)a.s.active substanceADIacceptable daily intakeAFassessment factorAOELacceptable operator exposure levelARapplied radioactivityARDDacute reference doseAVavoidance factorBCFbioconcentration factorbwbody weightCASChemical Abstract ServiceCIconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence intervalCDAAdayDAAdays after applicationDARdraft assessment reportDAAdays after treatmentDFRdislodgeable foliar residueDMdry matterDT ₅₀ period required for 50 percent disappearance (define method of estimation)DT ₅₀ period required for 90 percent disappearance (define method of estimation)DFs0effective concentration (biomass)ECS0effective concentrationEBCS0effective concentrationENCS0european List of New Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeFRs0end avarga factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateGOMFood and Agriculture Organisation		
µmmicrometer (micron)a.s.active substanceADIacceptable dally intakeAFassessment factorAOELacceptable operator exposure levelARapplied radioactivityARfDacute reference doseAVavoidance factorBCFbioconcentration factorbwbody weightCASChemical Abstract ServiceCIconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence intervalCDAAdayDAAdays after applicationDARdislodgeable foliar residueDMdry matterDFRdislodgeable foliar residueDMdry weightEbCs_0effective concentration (biomass)ECCEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean Inventory of Existing Commercial Chemical SubstancesEMDIestimated maximum daily intakeER30effective concentration (growth rate)EUEuropean Unionftwa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stage<	μg	
a.s.active substanceADIacceptable daily intakeAFascessment factorAOELacceptable operator exposure levelARapplied radioactivityARDacute reference doseAVavoidance factorBCFbioconcentration factorbwbody weightCASChemical Abstract ServiceCIconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence intervalCLconfidence limitisddayDAAdays after applicationDAAdays after treatmentDFRdislodgeable foliar residueDMdry matterDTs0period required for 50 percent disappearance (define method of estimation)DTs0period required for 50 percent disappearance (define method of estimation)DTs0effective concentration (biomass)EC5s0effective concentration (biomass)EC5s0effective concentrationENKSEuropean List of New Chemical SubstancesELINKSEuropean List of New Chemical SubstancesELINKSEuropean Unionftwa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (f		e
AFassessment factorAOELacceptable operator exposure levelARapplied radioactivityARfDacute reference doseAVavoidance factorBCFbioconcentration factorbwbody weightCASChemical Abstract ServiceC1confidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence intervalCDAdays after applicationDAAdays after applicationDARdraft assessment reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDTs0period required for 50 percent disappearance (define method of estimation)DTs0period required for 50 percent disappearance (define method of estimation)DTs0effective concentration (biomass)EC5European Economic CommunityEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean Unionft(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordinati	•	
AFassessment factorAOELacceptable operator exposure levelARapplied radioactivityARfDacute reference doseAVavoidance factorBCFbioconcentration factorbwbody weightCASChemical Abstract ServiceC1confidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence intervalCDAdays after applicationDAAdays after applicationDARdraft assessment reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDTs0period required for 50 percent disappearance (define method of estimation)DTs0period required for 50 percent disappearance (define method of estimation)DTs0effective concentration (biomass)EC5European Economic CommunityEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean Unionft(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordinati	ADI	acceptable daily intake
ARapplied radioactivityARDacute reference doseAVavoidance factorBCFbioconcentration factorbwbody weightCASChemical Abstract ServiceCIconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence intervalOLDACCollaborative International Pesticide Analytical Council LimitedCLconfidence limitsddayDAAdays after applicationDARdraft assessment reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDTs0period required for 50 percent disappearance (define method of estimation)dwdry weightEbCs0effective concentration (biomass)ECS40effective concentrationEECEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean Ist of New Chemical SubstancesELINKSEuropean Ist of New Chemical SubstancesEMDIestimated maximum daily intakeER50emergence rate/effective rate, medianErC40Food and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stage	AF	1 5
ARapplied radioactivityARIDacute reference doseAVavoidance factorBCFbioconcentration factorbwbody weightCASChemical Abstract ServiceCIconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence limitsddayDAAdays after applicationDARdraft assessment reportDAAdays after treatmentDFRdislodgeable foliar residueDMdry matterDTs0period required for 90 percent disappearance (define method of estimation)dwdry weightEbCs0effective concentration (biomass)EC30effective concentrationEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean Inventory of Existing Commercial Chemical SubstancesEUNKSEuropean Inventory of Existing Commercial Chemical SubstancesEUNKSEuropean Inventory of Existing Commercial Chemical SubstancesEUNKSForod and Agriculture Organisation of the United NationsFIRFood and Agriculture Organisation of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare<	AOEL	acceptable operator exposure level
ARfDacute reference doseAVavoidance factorBCFbioconcentration factorbwbody weightCASChemical Abstract ServiceCIconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence limitsddayDAAdays after applicationDAAdays after reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDTs0period required for 50 percent disappearance (define method of estimation)DTs0period required for 90 percent disappearance (define method of estimation)dwdry weightEbCs0effective concentration (biomass)ECEuropean Economic CommunityEINECSEuropean List of New Chemical SubstancesELINKSEuropean List of New Chemical SubstancesELMIKEuropean Unionfttwa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood and Agriculture Organisation of the United NationsFIRFood and Agriculture Organisation of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCFFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)	AR	
BCFbioconcentration factorbwbody weightCASChemical Abstract ServiceCIconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence limitsddayDAAdays after applicationDARdarft assessment reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDT ₃₀ period required for 50 percent disappearance (define method of estimation)DT ₉₀ effective concentration (biomass)ECS0effective concentrationENCS1European Inventory of Existing Commercial Chemical SubstancesELINKSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesELINKSEuropean Unionfttwa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood and Agriculture Organisation of the United NationsFIRFood and Agriculture Organisation of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	ARfD	
bwbody weightCASChemical Abstract ServiceCIconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence limitsddayDAAdays after applicationDARdraft assessment reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDTs0period required for 50 percent disappearance (define method of estimation)DT90period required for 90 percent disappearance (define method of estimation)dwdry weightEbCs0effective concentration (biomass)EECEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesELINKSEuropean Unionfttwa)time weighted average factorFAOFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)	AV	avoidance factor
CASChemical Abstract ServiceCIconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence limitsddayDAAdays after applicationDARdarfa assessment reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDTs0period required for 50 percent disappearance (define method of estimation)DTs0period required for 90 percent disappearance (define method of estimation)dwdry weightEbCs0effective concentration (biomass)ECCEuropean List of New Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeERs0effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	BCF	bioconcentration factor
CASChemical Abstract ServiceCIconfidence intervalCIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence limitsddayDAAdays after applicationDARdarfa assessment reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDTs0period required for 50 percent disappearance (define method of estimation)DTs0period required for 90 percent disappearance (define method of estimation)dwdry weightEbCs0effective concentration (biomass)ECCEuropean List of New Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeERs0effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	bw	body weight
CIPACCollaborative International Pesticide Analytical Council LimitedCLconfidence limitsddayDAAdays after applicationDAAdays after applicationDARdraft assessment reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDT ₅₀ period required for 50 percent disappearance (define method of estimation)DT ₉₀ period required for 90 percent disappearance (define method of estimation)dwdry weightEbC ₅₀ effective concentration (biomass)EC ₅₀ effective concentrationEINECSEuropean Economic CommunityEINKSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeER ₅₀ emergence rate/effective rate, medianErC ₅₀ Eropean Unionfttwa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)haahectare	CAS	
CLconfidence limitsddayDAAdays after applicationDARdraft assessment reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDTs0period required for 50 percent disappearance (define method of estimation)DTs0period required for 90 percent disappearance (define method of estimation)dwdry weightEbCs0effective concentration (biomass)EECEuropean Economic CommunityEINKCSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeERs0emergence rate/effective rate, medianErCs0effective concentration (growth rate)EUEuropean Unionfttwa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood and Agriculture Organisation of the United NationsFIRFood and Agriculture Intervention of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	CI	confidence interval
CLconfidence limitsddayDAAdays after applicationDARdraft assessment reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDT ₃₀ period required for 50 percent disappearance (define method of estimation)DT ₃₀ period required for 90 percent disappearance (define method of estimation)dwdry weightEDC ₅₀ effective concentration (biomass)EC_50effective concentrationEECEuropean Economic CommunityEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeERs ₀ effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood and Agriculture Organisation of the United NationsFIRFood and Agriculture InterfaceggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	CIPAC	Collaborative International Pesticide Analytical Council Limited
DAADays after applicationDARdraft assessment reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDTs0period required for 50 percent disappearance (define method of estimation)DTy0period required for 90 percent disappearance (define method of estimation)dwdry weightEbCs0effective concentration (biomass)EC30effective concentrationEECEuropean Economic CommunityEINKSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeERs0effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)haahectare	CL	confidence limits
DARdraft assessment reportDATdays after treatmentDFRdislodgeable foliar residueDMdry matterDTs0period required for 50 percent disappearance (define method of estimation)DT90period required for 90 percent disappearance (define method of estimation)dwdry weightEbCs0effective concentration (biomass)ECEuropean Economic CommunityEINKCSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeERs0effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	d	day
DATdays after treatmentDFRdislodgeable foliar residueDMdry matterDT_{50}period required for 50 percent disappearance (define method of estimation)DT_{90}period required for 90 percent disappearance (define method of estimation)dwdry weightEbC_{50}effective concentration (biomass)EC2European Economic CommunityEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeER_{50}effective concentration (growth rate)EUEuropean Unionft(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	DAA	days after application
DFRdislodgeable foliar residueDMdry matterDT_{50}period required for 50 percent disappearance (define method of estimation)DT_{90}period required for 90 percent disappearance (define method of estimation)dwdry weightEbC_{50}effective concentration (biomass)EC_50effective concentrationEECEuropean Economic CommunityEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeER_{50}effective concentration (growth rate)EUEuropean Unionfttwa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	DAR	draft assessment report
DMdry matterDT $_{50}$ period required for 50 percent disappearance (define method of estimation)DT $_{90}$ period required for 90 percent disappearance (define method of estimation)dwdry weightEbC $_{50}$ effective concentration (biomass)EC $_{50}$ effective concentrationEECEuropean Economic CommunityEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeERs_0emergence rate/effective rate, medianErC $_{50}$ effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	DAT	days after treatment
DT_{50} period required for 50 percent disappearance (define method of estimation) DT_{90} period required for 90 percent disappearance (define method of estimation) dw dry weight EbC_{50} effective concentration (biomass) EC_{50} effective concentration EEC European Economic Community $EINECS$ European Inventory of Existing Commercial Chemical Substances $ELINKS$ European List of New Chemical Substances $EMDI$ estimated maximum daily intake ER_{50} effective concentration (growth rate) EU European Union $f(twa)$ time weighted average factor FAO Food and Agriculture Organisation of the United Nations FIR Food intake rate $FOCUS$ Forum for the Co-ordination of Pesticide Fate Models and their Use g gram GAP good agricultural practice GC gas chromatography $GCFF$ Global Crop Protection Federation (formerly known as GIFAP) GS growth stage h hour(s)hahectare	DFR	dislodgeable foliar residue
DT_{90}period required for 90 percent disappearance (define method of estimation)dwdry weightEbC_{50}effective concentration (biomass)EC_{50}effective concentrationEECEuropean Economic CommunityEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeER_{50}effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	DM	dry matter
dwdry weightEbC_{50}effective concentration (biomass)EC_{50}effective concentrationEECEuropean Economic CommunityEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeER_{50}emergence rate/effective rate, medianErC_{50}effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	DT_{50}	period required for 50 percent disappearance (define method of estimation)
EbC_{50}effective concentration (biomass) EC_{50} effective concentrationEECEuropean Economic CommunityEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intake ER_{50} emergence rate/effective rate, median ErC_{50} effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	DT_{90}	period required for 90 percent disappearance (define method of estimation)
ECs0effective concentrationEECEuropean Economic CommunityEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeERs0emergence rate/effective rate, medianErCs0effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	dw	dry weight
EECEuropean Economic CommunityEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeER50emergence rate/effective rate, medianErC50effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	EbC ₅₀	
EINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeER ₅₀ emergence rate/effective rate, medianErC ₅₀ effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	EC_{50}	effective concentration
ELINKSEuropean List of New Chemical SubstancesEMDIestimated maximum daily intakeER50emergence rate/effective rate, medianErC50effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	EEC	European Economic Community
EMDIestimated maximum daily intakeER_{50}emergence rate/effective rate, medianErC_{50}effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	EINECS	European Inventory of Existing Commercial Chemical Substances
ER ₅₀ emergence rate/effective rate, medianErC ₅₀ effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	ELINKS	European List of New Chemical Substances
ErCs0effective concentration (growth rate)EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	EMDI	estimated maximum daily intake
EUEuropean Unionf(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare		emergence rate/effective rate, median
f(twa)time weighted average factorFAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	ErC_{50}	effective concentration (growth rate)
FAOFood and Agriculture Organisation of the United NationsFIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	EU	*
FIRFood intake rateFOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare		
FOCUSForum for the Co-ordination of Pesticide Fate Models and their UseggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare		
ggramGAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare		
GAPgood agricultural practiceGCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare	FOCUS	Forum for the Co-ordination of Pesticide Fate Models and their Use
GCgas chromatographyGCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare		•
GCPFGlobal Crop Protection Federation (formerly known as GIFAP)GSgrowth stagehhour(s)hahectare		
GSgrowth stagehhour(s)hahectare		
h hour(s) ha hectare		1
ha hectare		
hl hectolitre		
	hL	hectolitre

Appendix 2 – abbreviations

HPLC	high pressure liquid chromatography
	or high performance liquid chromatography
HQ	hazard quotient
ISÒ	International Organisation for Standardisation
IUPAC	International Union of Pure and Applied Chemistry
kg	kilogram
K _{foc}	Freundlich organic carbon adsorption coefficient
L	litre
LC	liquid chromatography
LC_{50}	lethal concentration, median
LC-MS	liquid chromatography-mass spectrometry
LC-MS-MS	liquid chromatography with tandem mass spectrometry
LD_{50}	lethal dose, median; dosis letalis media
LOAEL	lowest observable adverse effect level
LOD	limit of detection
LOD	limit of quantification (determination)
	metre
m M/L	
MAF	mixing and loading
	multiple application factor
mg	milligram millilitre
mL	millimetre
mm MDI	
MRL	maximum residue limit or level
MS	mass spectrometry
MWHC	maximum water holding capacity
NESTI	national estimated short-term intake
ng	nanogram
NOAEC	no observed adverse effect concentration
NOAEL	no observed adverse effect level
NOEC	no observed effect concentration
NOEL	no observed effect level
OM	organic matter content
PD	proportion of different food types
PEC	predicted environmental concentration
PEC _{air}	predicted environmental concentration in air
PEC _{gw}	predicted environmental concentration in ground water
PEC _{sed}	predicted environmental concentration in sediment
PEC _{soil}	predicted environmental concentration in soil
PEC_{sw}	predicted environmental concentration in surface water
pН	pH-value
PHI	pre-harvest interval
pK _a	negative logarithm (to the base 10) of the dissociation constant
Pow	partition coefficient between <i>n</i> -octanol and water
PPE	personal protective equipment
ppm	parts per million (10^{-6})
ppp	plant protection product
PT	proportion of diet obtained in the treated area
r^2	coefficient of determination
RPE	respiratory protective equipment

Appendix 2 – abbreviations

RUD	residue per unit dose
SC	suspension concentrate
SD	standard deviation
SFO	single first-order
SSD	species sensitivity distribution
STMR	supervised trials median residue
TER	toxicity exposure ratio
TER _A	toxicity exposure ratio for acute exposure
TER _{LT}	toxicity exposure ratio following chronic exposure
TER _{ST}	toxicity exposure ratio following repeated exposure
TF	transfer factor
TMDI	theoretical maximum daily intake
TRR	total radioactive residue
TWA	time weighted average
UV	ultraviolet
W/S	water/sediment
WG	water dispersible granule
WHO	World Health Organisation
yr	year

Appendix 3 – used compound code(s)

APPENDIX 3 – USED COMPOUND CODE(S)

Code/Trivial name*	Chemical name	Structural formula
Propaquizafop	2-isopropylideneamino- oxyethyl (<i>R</i>)-2-[4-(6- chloroquinoxalin-2- yloxy)phenoxy]propionate	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Quizalofop QUIZ	2-[4-(6-chloroquinoxalin-2- yloxy)phenoxy]propionic acid	CI CH3 OH
Quizalofop-P CGA 287422	(<i>R</i>)-2-[4-(6- chloroquinoxalin-2- yloxy)phenoxy]propionic acid	CI N O CH ₃ O O O O O O O O O O O O O O O O O O O
Quizalofop-P-ethyl	ethyl (2 <i>R</i>)-2-{4-[(6- chloroquinoxalin-2- yl)oxy]phenoxy}propanoate	CI N O CH ₃ O CH ₃
Quizalofop-P-tefuryl	(<i>RS</i>)-tetrahydrofurfuryl (<i>R</i>)- 2-[4-(6-chloroquinoxalin-2- yloxy)phenoxy]propionate	
Hydroxy-quizalofop QUIZ-OH Hydroxy-propaquizafop acid CGA 294972	(<i>R</i>)-2-[4-(6-chloro-3- hydroxyquinoxalin-2- yloxy)phenoxy]propionic acid	$\begin{array}{c} Cl & CH_{3} \\ & &$
Hydroxy-quinoxaline CHQ CGA 290291 CQO	6-chloroquinoxalin-2-ol	$\begin{array}{c} Cl \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Dihydroxy- quinoxaline Dihydroxychloroquinox alin CHHQ CGA 294970	6-chloroquinoxaline-2,3- diol	$\begin{bmatrix} CI & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

Appendix 3 – used compound code(s)

Code/Trivial name*	Chemical name	Structural formula
Quizalofop-phenol CQOP Hydroxy ether CGA 129674	2-[4-(6-chloroquinoxalin-2- yloxy)phenol]	
Hydroxy-quizalofop- phenol CHQOP Dihydroxy ether CGA 294971	4-(3-hydroxy-6- chloroquinoxalin-2- yloxy)phenol	Cl N OH OH
Phenoxy acid Ro 16-2752 PPA	(<i>R</i>)-2-(4-hydroxyphenoxy)- propionic acid	HO HO HO HO HO HO HO HO HO HO
Toluene		H ₃ C
Ro 41-5259 7-chloro isomer of propaquizafop	2-isopropylideneamino- oxyethyl (<i>R</i>)-2-[4-(7- chloroquinoxalin-2- yloxy)phenoxy]propionate	CI N CI N CH ₃ CI N CI CI N CH ₃

* The metabolite name in bold is the name used in the conclusion.